Home
Class 14
MATHS
What is the largest value of n such that...

What is the largest value of n such that `10^n` divides the product
`2^5xx3^3xx4^8xx5^3xx6^7xx7^6xx8^(12)xx9^9xx10^6xx15^(12)xx20^(14)xx22^(11)xx25^(15)?`

A

65

B

55

C

50

D

45

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the largest power of 10 that divides the product 1 xx 2 xx 3 xx 4 … xx 3 xx 24 xx 25 ?

Find the number of zeros st the end of the product of the expression 2^1xx5^2xx2^3xx5^4xx2^5xx5^6xx2^7xx5^8xx2^9xx5^10 .

Find the unit digit of 3^6 xx 4^7 xx 6^3 xx 7^4 xx 8^2 xx 9^5 .

1xx3xx5xx7xx9xx...xx(2n-1)=

The number of zeros at the end of the product of : 2^3 xx 3^4 xx 4^5 xx 5^6 + 3^5 xx 5^7 xx 7^9 xx 8^10 + 4^5 xx 5^6 xx 6^7 xx 7^8 - 10^2 xx 15^3 xx 20^4 is :