Home
Class 14
MATHS
If (1+px)/(1-px)sqrt((1-qx)/(1+qx))=1, t...

If `(1+px)/(1-px)sqrt((1-qx)/(1+qx))=1`, then what are the non-zero solutions or x ?

A

`pm1/psqrt((2p-q)/q),2pneq`

B

`pm1/(pq)sqrt(p-q),pneq`

C

`pmp/qsqrt(p-q),pneq`

D

`pmq/psqrt(2p-q),2pneq`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

if lim_(x rarr0)(sqrt(px^(2)+qx)-rx)=2 then

If (1)/(sqrt(alpha)) and (1)/(sqrt(beta)) are the roots of the equation px^(2)+qx+1=0(p!=0,p,q in R) then the equation x(x+q^(3))+(p^(3)-3pqx)=0 has roots

Solutions of the equations "cos"^(2) ((1)/(2) px)+ "cos"^(2) ((1)/(2) qx) = 1 form an arithmetic progression with common difference

Integral of F(x)/(px^(2)+qx+r)sqrt(ax+b)dx

Let the equation of the pair of lines, y = px and y = qx, can be written as (y – px) (y – qx) = 0. Then the equation of the pair of the angle bisectors of the lines x^2 – 4xy – 5y^2 = 0 is:

If tan px=cot qx, then the solutions are in A.P.with common difference

If (a)/(k),a, ak are the roots of x^(3)-px^(2)+qx-r=0 then a=

If 2p^(3)-9pq+27r=0 then prove that the roots of the equations rx^(3)-qx^(2)+px-1=0 are in ...

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation x^(2)-px+q=0 (b) x^(2)+px+q=0( c) qx^(2)+px+1=0 (d) q^(2)-px+1=0

If f(x)=px^(2)+qx+r and f(-2)=11,f(-1)=6,f(1)=2 then the minimum value of f(x) is