Home
Class 11
MATHS
If xy + yz + zx = 1, prove that : x/(1-...

If `xy + yz + zx = 1`, prove that :
`x/(1-x^2)+y/(1-y^2)+z/(1-z^2)= (4xyz)/((1-x^2)(1-y^2)(1-z^2))`.

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRY

    MODERN PUBLICATION|Exercise EXERCISE|730 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise EXERCISE|304 Videos

Similar Questions

Explore conceptually related problems

If x +y+ z=xyz , prove that : (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)= (2x)/(1-x^2). (2y)/ (1-y^2). (2z)/(1-z^2) .

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

If x +y+ z=xyz , prove that : (3x-x^3)/(1-3x^2)+ (3y-y^3)/(1-3y^2)+(3z-z^3)/(1-3z^2)= (3x-x^3)/(1-3x^2). (3y-y^3)/(1-3y^2).(3z-z^3)/(1-3z^2) .

If sin^-1x + sin^-1y + sin^-1z = pi , prove that xsqrt(1-x^2)+y sqrt(1-y^2) + z sqrt(1-z^2) = 2xyz

Show that |(1,x^2,x^3),(1,y^2,y^3),(1,z^2,z^3)| = (x-y),(y-z)(z-x)(xy+yz+zx)

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

If x = 1, y = 3, z = 4, find the value of x^2 + 9y^2 + 4z^2 - 6xy + 12yz -4zx .

If tan^-1x + tan^-1y + tan^-1z = pi , then prove that: x + y + z = xyz.