Home
Class 11
MATHS
Let sin theta be -ve and cos theta be + ...

Let `sin theta` be -ve and `cos theta` be + ve, then `theta` lies in :

A

Ist quadrant

B

IInd quadrant

C

IIIrd quadrant

D

IVth qudrant.

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRY

    MODERN PUBLICATION|Exercise EXERCISE|730 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise EXERCISE|304 Videos

Similar Questions

Explore conceptually related problems

Let sin theta= -1/2 and cos theta= -sqrt3/2 , then theta lies in :

If sin theta=sqrt3/2 and cos theta= -1/2 then theta lies in :

If sin^(100) theta - cos^(100) theta =1 , then theta is

If x = a (sin theta - theta cos theta) and y = a (cos theta + theta sin theta) find dy/dx at theta = pi/4

Show that the normal at any point theta to the curve x = a cos theta + a theta sin theta, y = a sin theta - a theta cos theta is at a constant distance from the origin.

Verify that [(cos theta, sin theta),(-sin theta, cos theta)] and [(cos theta, - sin theta),(sin theta, cos theta)] are inverse of each other.

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is

(cosec theta -sin theta ) (sec theta - cos theta ) (tan theta + cot theta ) = 1.

Let P = {theta: sin theta- cos theta= sqrt2 cos theta} and Q= {theta: sin theta+ cos theta= sqrt2 sin theta} be two sets. Then :