Home
Class 11
MATHS
Let sin theta= -1/2 and cos theta= -sqrt...

Let `sin theta= -1/2` and `cos theta= -sqrt3/2`, then `theta` lies in :

A

Ist quadrant

B

IInd quadrant

C

IIIrd quadrant

D

IVth qudrant.

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRY

    MODERN PUBLICATION|Exercise EXERCISE|730 Videos
  • STRAIGHT LINES

    MODERN PUBLICATION|Exercise EXERCISE|304 Videos

Similar Questions

Explore conceptually related problems

If sintheta=-1/2 and costheta=sqrt3/2 , then theta lies in:

If sin theta=sqrt3/2 and cos theta= -1/2 then theta lies in :

If sin theta=1/2 and cos theta=-(sqrt3)/2 , then the general value of theta is:

Let sin theta be -ve and cos theta be + ve, then theta lies in :

Let P = {theta: sin theta- cos theta= sqrt2 cos theta} and Q= {theta: sin theta+ cos theta= sqrt2 sin theta} be two sets. Then :

If sin theta= -1/sqrt2 and tan theta=1 , find the quadrant in which theta lies.

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is

Prove that : sin^8 theta- cos^8 theta= (sin^2 theta- cos^2 theta)(1-2 sin^2 theta cos^2 theta) .

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is