Home
Class 11
MATHS
Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)...

Prove that `i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0`, for all `n in N`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE|478 Videos

Similar Questions

Explore conceptually related problems

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(n=1)^(25)i^(n!)=a+ib, " where " i=sqrt(-1) , then a-b, is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=-2)^(95)i^(r)+sum_(r=0)^(50)i^(r!)=a+ib, " where " i=sqrt(-1) , the unit digit of a^(2011)+b^(2012) , is

Sum of four consecutive powers of i(iota) is zero. i.e., i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0,forall n in I. If sum_(r=4)^(100)i^(r!)+prod_(r=1)^(101)i^(r)=a+ib, " where " i=sqrt(-1) , then a+75b, is

For an positive integer n, prove that : i^(n) + i^(n+1) + i^(n+2) + i^(n+3) + i^(n+4) + i^(n + 5) + i^(n+6) + i^(n+7) = 0 .

Use the Principle of Mathematical Induction to prove that n(n + 1) (2n + 1) is divisible by 6 for all n in N.

Prove that n! + (n + 1)! = n! (n + 2)

Prove by Induction, that (2n+7)le (n+3)^2 for all n in N. Using this, prove by induction that : (n+3)^2 le 2^(n+3) for all n in N.

Prove that n! (n+2)=n!+(n+1)! .

Let A=[(1,1,1),(0,1,1),(0,0,1)] prove that by induction that A^n=[(1,n,n(n+1)/2),(0,1,n),(0,0,1)] for all n in N .

Prove that (n!)^2 le n^n. (n!)<(2n)! for all positive integers n.