Home
Class 11
MATHS
Prove that : [((2-3i)/(3-4i))((2+3i)/(...

Prove that :
`[((2-3i)/(3-4i))((2+3i)/(3+4i))]` is real .

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE|478 Videos

Similar Questions

Explore conceptually related problems

Prove that : [((3+2i)/(2-5i))+((3-2i)/(2+5i))] is rational .

Find the square roots of : ((2+3i)/(5-4i)+(2-3i)/(5+4i)) .

Prove that : 1+i^2+i^4+i^6=0 .

Prove that : 1/i-1/i^2+1/i^3-1/i^4=0 .

Find the conjugate of ((3-2i)(2+3i))/((1+ 2i)(2-i)) .

Find the values of x and y if : ((1+i)x-2i)/(3+i)+((2-3i)y +i)/(3-i) =i , where i=sqrt(-1)

Without expanding the determinant at any stage prove that |{:(-5,3+5i,(3)/(2)-4i),(3-5i,8,4+5i),((3)/(2)+4i,4-5i,9):}| has a purely real value.

Verify that bar((2+3i)(1-2i)) = bar((2+3i)) bar( (1-2i))

Simplify : (1+i)(2+3i)(3+4i)(4+5i) .