Home
Class 11
MATHS
If z = 2-3i, show that z^2- 4z+13= 0 and...

If `z = 2-3i`, show that `z^2- 4z+13= 0` and hence find the value of `4z^3 - 3z^2 + 169`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE|478 Videos

Similar Questions

Explore conceptually related problems

If z = 10, find the value of z^3 – 3(z – 10) .

If |z-4/z|=2 then the greatest value of |z| is:

If iz^3+z^2-z+i = 0 , then show that |z|=1.

If |z_(1)| = 1, |z_(2)| =2, |z_(3)|=3, and |9z_(1)z_(2) + 4z_(1)z_(3)+z_(2)z_(3)|= 12 , then find the value of |z_(1) + z_(2) + z_(3)| .

The minimum value of |2Z -1 | + | 3Z-2| is:

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Find the value of Im(z) .

If the polynomials az^3+4z^2+3z-4 are z^3-4z+a leave the same remainder when divided by z-3, find the value of a.

If |z_(1) -1|le,|z_(2) -2| le2,|z_(3) - 3|le 3, then find the greatest value of |z_(1) + z_(2) + z_(3)|

If arg (z^(1//2))=(1)/(2)arg(z^(2)+barzz^(1//3)), find the value of |z|.

If |z+(4)/(z)|=2, find the maximum and minimum values of |z|.