Home
Class 11
MATHS
If a+ib= (c+i)/(c-i), where c is real, p...

If `a+ib= (c+i)/(c-i)`, where c is real, prove that `a^2+b^2=1` and `b/a= (2c)/(c^2-1)`.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE|478 Videos

Similar Questions

Explore conceptually related problems

If (c+i)/(c-i)= a+ ib , where a, b, c are real, then a^2+ b^2 equals :

If x-iy= sqrt((a-ib)/(c-id)) , prove that (x^2+y^2)^2= (a^2+b^2)/(c^2+d^2) .

If a,b,c are in HP, then prove that (a+b)/(2a-b)+(c+b)/(2c-b)gt4 .

If a, b, c are in A.P., prove that : a^3+4b^3+c^3=3b (a^2+c^2) .

If x-iy= sqrt((a-ib)/(c-id)) prove that (x^2+y^2)^2= (a^2+b^2)/(c^2+d^2) .

If (a + ib) (c + id) (e + if) (g + ih) = A + iB , then show that (a^2 + b^2) (c^2 + d^2) (e^2 +f^2) (g^2+ h^2) = A^2 + B^2

If a ne b ne c , prove that (a, a^2), (b, b^2), (c, c^2) can never be collinear.

Two systems of rectangular axes have the same origin. If a plane cuts them at distance a,b,c and a',b',c' respectively form the origin, prove that 1/a^2+1/b^2+1/c^2=1/(a'^2)+1/(b'^2)+1/(c'^2) .

Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt((a(a + b + c))/(bc)) + tan^(-1) sqrt((b (a + b + c))/(ca)) + tan^(-1) sqrt((c(a + b+ c))/(ab)) = pi

If a, b, c are in A.P., prove that : (b+c)^2-a^2, (c+a)^2-b^2, (a+b)^2-c^2 are also in A.P.