Home
Class 11
MATHS
If z = x + iy and w=(1-iz)/(z-i), show t...

If z = x + iy and `w=(1-iz)/(z-i)`, show that : `|w|=1 implies z` is purely real.

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise EXERCISE|291 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise EXERCISE|221 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE|478 Videos

Similar Questions

Explore conceptually related problems

If z=x+iy and |z|=1, show that the complex number z_1=(z-1)/(z+1) is purely imagine.

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then R e(w) is

If z_1 = 3 + 4i and z_2=12 -5i , verify : |-z_1|=|z_1| .

If iz^3+z^2-z+i = 0 , then show that |z|=1.

If z=x+iy and |z+a|=3|z-a|, show that 2(x^2+y^2)=5ax-2a^2 .

If w= z/(z-i1/3) and |w|=1,then z lies on:

If z= x + iy, x, y real, prove that : |x|+|y| le sqrt2 |z| .

If z_1 = 5 + 7i and z_2= 7 - 9i ,verify : |-z_1|=|z_1| .

If z_1 = 3 + 4i and z_2=12 -5i , verify : |z_1 z_2|= |z_1| |z_2| .

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these