Home
Class 11
MATHS
If omega=alpha+ibeta, " where " beta ne ...

If `omega=alpha+ibeta, " where " beta ne 0,i=sqrt(-1) " and " z ne 1`, satisfies the condition that `((omega-bar(omega)z)/(1-z))` is purely real, the set of values of z is

A

` {z: |z|=1}`

B

`{z:z= bar z}`

C

`{z:z ne 1}`

D

` {z: |z|=1,z ne 1}` .

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE|289 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE|334 Videos
  • MATHEMATICAL INDUCTION

    MODERN PUBLICATION|Exercise EXERCISE|85 Videos

Similar Questions

Explore conceptually related problems

If w=alpha+ibeta, where beta!=0 and z!=1 , satisfies the condition that ((w- bar w z)/(1-z)) is a purely real, then the set of values of z is |z|=1,z!=2 (b) |z|=1a n dz!=1 (c) z=bar z (d) None of these

If z=x+iy and |z|=1, show that the complex number z_1=(z-1)/(z+1) is purely imagine.

If the equation z^(3)+(3+i)z^(2)-3z-(m+i)=0, " where " i=sqrt(-1) " and " m in R , has atleast one real root, value of m is

If omega^(3)=1 and omega ne1 , then (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5)) is equal to

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If |z-2i|lesqrt(2), where i=sqrt(-1), then the maximum value of |3-i(z-1)|, is

Let z=9+ai, where i=sqrt(-1) and a be non-zero real. If Im(z^(2))=Im(z^(3)) , sum of the digits of a^(2) is

If z ne 1 and (z^(2))/(z-1) is real, then the point represented by the complex number z lies

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

Let omega be a solution of z^3-1 = 0 If a = 2 , b=8 and c =7 then the value of 3/(omega^a) + 3/(omega^b) + 3/(omega^c) is equal to

MODERN PUBLICATION-LINEAR INEQUATIONS-EXERCISE
  1. If a, b, c and u, v, w are complex numbers representing the vertices o...

    Text Solution

    |

  2. If z^(2)+z+1=0, where z is a complex number, the value of (z+1/z)^(2)+...

    Text Solution

    |

  3. If omega=alpha+ibeta, " where " beta ne 0,i=sqrt(-1) " and " z ne 1, s...

    Text Solution

    |

  4. If abs(z+4) le 3, the maximum value of abs(z+1) is

    Text Solution

    |

  5. If |z|=1 and z!=1, then all the values of z/(1-z^2) lie on

    Text Solution

    |

  6. A man walks a distance of 3 units from the origin towards the North-...

    Text Solution

    |

  7. The conjugate of a complex number is 1/(i-1). Then that complex number...

    Text Solution

    |

  8. How many real solutions does the equation x^(7)=14x^(5)+16x^(3)+30x-56...

    Text Solution

    |

  9. The quadratic equations x^2""-6x""+""a""=""0""a n d ""x^2""-c x""+""...

    Text Solution

    |

  10. Let z=x+iy be a complex number, where x and y are integers and i=sqrt(...

    Text Solution

    |

  11. If |z-4/z|=2 then the greatest value of |z| is:

    Text Solution

    |

  12. If the roots of the equation b x^2+""c x""+""a""=""0 be imaginary, t...

    Text Solution

    |

  13. The number of complex numbersd z, such that abs(z-1)=abs(z+1)=abs(z-i)...

    Text Solution

    |

  14. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+tz(2...

    Text Solution

    |

  15. Let alpha and beta be real and z be a complex number. If z^(2)+az+beta...

    Text Solution

    |

  16. If omega( ne 1) is a cube root of unity and (1+omega)^(7)=A+bomega, th...

    Text Solution

    |

  17. By Mathematical Induction, prove that : n! <((n+1)/2)^n , n>1.

    Text Solution

    |

  18. By Mathematical Induction, prove that : (1+1/n)^n len for all nge3.

    Text Solution

    |

  19. By Mathematical Induction, prove the following : (4^n+ 15n -1) is di...

    Text Solution

    |

  20. Given n^4 <10^n for a fixed integer nge 2. Prove that (n+1)^4 <10^(n+1...

    Text Solution

    |