Home
Class 12
MATHS
Ellipse x^2/8+y^2/4=1 then tangent at P(...

Ellipse `x^2/8+y^2/4=1` then tangent at P(2nd quard) perpendicular to `x+2dy=0` eccentricity = e ,SS' is foci . then find `(5-e^2)*DeltaSPS' `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Identify the Ellipse and its Parameters The given ellipse is: \[ \frac{x^2}{8} + \frac{y^2}{4} = 1 \] From this, we can identify: - \( a^2 = 8 \) ⇒ \( a = 2\sqrt{2} \) - \( b^2 = 4 \) ⇒ \( b = 2 \) ### Step 2: Calculate the Eccentricity The eccentricity \( e \) of an ellipse is given by the formula: \[ e = \sqrt{1 - \frac{b^2}{a^2}} \] Substituting the values: \[ e = \sqrt{1 - \frac{4}{8}} = \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] ### Step 3: Find the Point \( P \) on the Ellipse The coordinates of any point \( P \) on the ellipse can be expressed as: \[ P = (a \cos \theta, b \sin \theta) \] Since \( P \) is in the second quadrant, we have: \[ P = (2\sqrt{2} \cos \theta, 2 \sin \theta) \] where \( \cos \theta < 0 \) and \( \sin \theta > 0 \). ### Step 4: Equation of the Tangent at Point \( P \) The equation of the tangent to the ellipse at point \( P \) is given by: \[ \frac{x}{a \cos \theta} + \frac{y}{b \sin \theta} = 1 \] Substituting \( a \) and \( b \): \[ \frac{x}{2\sqrt{2} \cos \theta} + \frac{y}{2 \sin \theta} = 1 \] Multiplying through by \( 2\sqrt{2} \sin \theta \): \[ x \sin \theta + \sqrt{2} y \cos \theta = 2\sqrt{2} \sin \theta \] ### Step 5: Find the Slope of the Tangent Rearranging the tangent equation gives: \[ \sqrt{2} y \cos \theta = 2\sqrt{2} \sin \theta - x \sin \theta \] The slope \( m_1 \) of the tangent line is: \[ m_1 = -\frac{\sin \theta}{\sqrt{2} \cos \theta} = -\frac{\tan \theta}{\sqrt{2}} \] ### Step 6: Find the Slope of the Given Line The line \( x + 2y = 0 \) can be rearranged to find its slope: \[ y = -\frac{1}{2}x \quad \Rightarrow \quad m_2 = -\frac{1}{2} \] ### Step 7: Use the Perpendicular Condition Since the tangents are perpendicular: \[ m_1 \cdot m_2 = -1 \] Substituting the slopes: \[ \left(-\frac{\tan \theta}{\sqrt{2}}\right) \left(-\frac{1}{2}\right) = -1 \] This simplifies to: \[ \frac{\tan \theta}{2\sqrt{2}} = 1 \quad \Rightarrow \quad \tan \theta = 2\sqrt{2} \] ### Step 8: Calculate \( \sin \theta \) and \( \cos \theta \) Using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \): Let \( \sin \theta = 2\sqrt{2} \cos \theta \). Using \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ (2\sqrt{2} \cos \theta)^2 + \cos^2 \theta = 1 \quad \Rightarrow \quad 8 \cos^2 \theta + \cos^2 \theta = 1 \quad \Rightarrow \quad 9 \cos^2 \theta = 1 \] Thus, \[ \cos^2 \theta = \frac{1}{9} \quad \Rightarrow \quad \cos \theta = -\frac{1}{3} \quad (\text{since } \theta \text{ is in the second quadrant}) \] Then, \[ \sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9} \quad \Rightarrow \quad \sin \theta = \frac{2\sqrt{2}}{3} \] ### Step 9: Find Coordinates of Point \( P \) Substituting \( \cos \theta \) and \( \sin \theta \) into the coordinates of \( P \): \[ P = \left(2\sqrt{2} \left(-\frac{1}{3}\right), 2 \left(\frac{2\sqrt{2}}{3}\right)\right) = \left(-\frac{2\sqrt{2}}{3}, \frac{4\sqrt{2}}{3}\right) \] ### Step 10: Find the Foci \( S \) and \( S' \) The foci of the ellipse are given by: \[ S = (ae, 0) = \left(2\sqrt{2} \cdot \frac{1}{\sqrt{2}}, 0\right) = (2, 0) \] \[ S' = (-2, 0) \] ### Step 11: Calculate the Area of Triangle \( SPS' \) Using the formula for the area of a triangle with vertices at \( (x_1, y_1), (x_2, y_2), (x_3, y_3) \): \[ \text{Area} = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \] Substituting the coordinates: \[ \text{Area} = \frac{1}{2} \left| 2\left(\frac{4\sqrt{2}}{3} - 0\right) + (-2)\left(0 - \frac{4\sqrt{2}}{3}\right) + \left(-\frac{2\sqrt{2}}{3}\right)(0 - 0) \right| \] This simplifies to: \[ = \frac{1}{2} \left| \frac{8\sqrt{2}}{3} + \frac{8\sqrt{2}}{3} \right| = \frac{1}{2} \cdot \frac{16\sqrt{2}}{3} = \frac{8\sqrt{2}}{3} \] ### Step 12: Final Calculation Now, we need to calculate: \[ (5 - e^2) \cdot \text{Area} \] Where \( e^2 = \frac{1}{2} \): \[ 5 - e^2 = 5 - \frac{1}{2} = \frac{10}{2} - \frac{1}{2} = \frac{9}{2} \] Thus: \[ (5 - e^2) \cdot \text{Area} = \frac{9}{2} \cdot \frac{8\sqrt{2}}{3} = \frac{72\sqrt{2}}{6} = 12\sqrt{2} \] ### Final Answer The final answer is: \[ \boxed{12\sqrt{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If P is a variable point on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose focii are S' and S and e_(1) is the eccentricity and the locus of the inceose centre of Delta PSS is an ellipse whose eccentricity is e_(2), then the value of (1+(1)/(e_(1)))e_(2)

If e be the eccentricity of ellipse 3x2+2xy+3y^(2)=1 then 8e^(2) is

Eccentricity of the ellipse 4x^(2)+y^(2)-8x-2y+1=0

Find the latus rectum, the eccentricity and coordinates of the foci of the ellipse 9x^2 + 5y^2 + 30y=0 .

Find the latus rectum, the eccentricity and coordinates of the foci of the ellipse 9x^2 + 5y^2 + 30y=0 .

Find the centre, the length of axes, the eccentricity and the foci of the ellipse 12x^(2)+4y^(2)+24x-16y+25=0

The line 3x-4y=12 is a tangent to the ellipse with foci (-2,3) and (-1,0). Find the eccentricity of the ellipse.

Find the centre the lengths of the axes, eccentricity,foci of the following ellipse: 4x^(2)+y^(2)-8x+2y+1=0