Home
Class 12
MATHS
Find sum r^2.^20Cr...

Find `sum r^2.^20C_r`

A

`2^20`

B

`2^21`

C

`210xx2^19`

D

`2^19`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( \sum r^2 \cdot {20 \choose r} \), we can use a known formula for summation involving binomial coefficients. The formula states: \[ \sum_{r=0}^{n} r^2 \cdot {n \choose r} = n \cdot 2^{n-1} + n(n-1) \cdot 2^{n-2} \] In our case, \( n = 20 \). Let's apply this formula step by step: ### Step 1: Identify the values We have \( n = 20 \). ### Step 2: Apply the formula Using the formula: \[ \sum_{r=0}^{20} r^2 \cdot {20 \choose r} = 20 \cdot 2^{20-1} + 20(20-1) \cdot 2^{20-2} \] ### Step 3: Simplify the expression Now, we can simplify each term: 1. The first term: \[ 20 \cdot 2^{19} \] 2. The second term: \[ 20 \cdot 19 \cdot 2^{18} \] ### Step 4: Factor out common terms Now, we can factor out \( 2^{18} \) from both terms: \[ = 2^{18} \left( 20 \cdot 2 + 20 \cdot 19 \right) \] ### Step 5: Calculate the expression inside the parentheses Now, calculate \( 20 \cdot 2 + 20 \cdot 19 \): \[ 20 \cdot 2 = 40 \] \[ 20 \cdot 19 = 380 \] \[ 40 + 380 = 420 \] ### Step 6: Write the final expression Thus, we have: \[ \sum_{r=0}^{20} r^2 \cdot {20 \choose r} = 2^{18} \cdot 420 \] ### Step 7: Final simplification We can express \( 420 \) as \( 210 \cdot 2 \): \[ = 210 \cdot 2^{19} \] ### Conclusion The final result is: \[ \sum_{r=0}^{20} r^2 \cdot {20 \choose r} = 210 \cdot 2^{19} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum C_(0)-C_(2)+C_(4)-C_(6)+........ Where C_(r)=nC_(r)

Find the sum C_(0)-C_(2)+C_(4)-C_(6)+..., where C_(r)=^(6)C_(r)=^(n)C_(r)

Find the sum sum_(r=1)^(n)r^(2)(^nC_(r))/(n_(C_(r-1)))

Find sum of sum_(r=1)^(n)r.C(2n,r)

Find the sum sum_(r=0)^n(-1)^r*(""^nC_r)/(""^(r+3)C_r)

Find the sum sum_(r=1)^(n)(1)/(r(r+a)(r+2)(r+3))

Find the sum sum_(r=1)^(n)r(r+1)(r+2)(r+3)

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Find the coefficient of x^(25) in expansion of expression sum_(r=0)^(50)C_(r)(2x-3)^(r)(2-x)^(50-r)