Home
Class 12
MATHS
a+ar+ar^2+ . . . + oo=15 a^2+(ar)^2+(a...

`a+ar+ar^2+ . . . + oo=15`
`a^2+(ar)^2+(ar^2)^2+ . . . + oo=150` .
Find `ar^2+ar^4+ar^6+. . . oo`

A

`1/2`

B

`2/5`

C

`1/6`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two given equations: 1. \( S_1 = a + ar + ar^2 + \ldots = 15 \) 2. \( S_2 = a^2 + (ar)^2 + (ar^2)^2 + \ldots = 150 \) ### Step 1: Express the sums in terms of \( a \) and \( r \) The sum of an infinite geometric series can be expressed as: \[ S = \frac{a}{1 - r} \] For the first equation: \[ \frac{a}{1 - r} = 15 \tag{1} \] For the second equation, we note that: \[ S_2 = a^2 + (ar)^2 + (ar^2)^2 + \ldots = \frac{a^2}{1 - r^2} \] Thus, we have: \[ \frac{a^2}{1 - r^2} = 150 \tag{2} \] ### Step 2: Solve for \( a \) and \( r \) From equation (1), we can express \( a \) in terms of \( r \): \[ a = 15(1 - r) \tag{3} \] Substituting equation (3) into equation (2): \[ \frac{(15(1 - r))^2}{1 - r^2} = 150 \] Expanding this gives: \[ \frac{225(1 - r)^2}{1 - r^2} = 150 \] Cross-multiplying yields: \[ 225(1 - r)^2 = 150(1 - r^2) \] Expanding both sides: \[ 225(1 - 2r + r^2) = 150(1 - r^2) \] This simplifies to: \[ 225 - 450r + 225r^2 = 150 - 150r^2 \] Combining like terms: \[ 375r^2 - 450r + 75 = 0 \] ### Step 3: Simplify the quadratic equation Dividing the entire equation by 75: \[ 5r^2 - 6r + 1 = 0 \] ### Step 4: Use the quadratic formula to find \( r \) Using the quadratic formula \( r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ r = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 5 \cdot 1}}{2 \cdot 5} \] Calculating the discriminant: \[ r = \frac{6 \pm \sqrt{36 - 20}}{10} = \frac{6 \pm \sqrt{16}}{10} = \frac{6 \pm 4}{10} \] Thus, we have two potential solutions for \( r \): \[ r = \frac{10}{10} = 1 \quad \text{(not valid for a converging series)} \] \[ r = \frac{2}{10} = \frac{1}{5} \] ### Step 5: Find \( a \) Substituting \( r = \frac{1}{5} \) back into equation (3): \[ a = 15(1 - \frac{1}{5}) = 15 \cdot \frac{4}{5} = 12 \] ### Step 6: Find \( ar^2 + ar^4 + ar^6 + \ldots \) This series can be expressed as: \[ ar^2 + ar^4 + ar^6 + \ldots = ar^2(1 + r^2 + r^4 + \ldots) \] The sum of the infinite series \( 1 + r^2 + r^4 + \ldots \) is: \[ \frac{1}{1 - r^2} \] Thus, we have: \[ ar^2 \cdot \frac{1}{1 - r^2} \] Calculating \( ar^2 \): \[ ar^2 = 12 \cdot \left(\frac{1}{5}\right)^2 = 12 \cdot \frac{1}{25} = \frac{12}{25} \] Now substituting \( r^2 = \left(\frac{1}{5}\right)^2 = \frac{1}{25} \): \[ 1 - r^2 = 1 - \frac{1}{25} = \frac{24}{25} \] Thus, the sum becomes: \[ \frac{\frac{12}{25}}{\frac{24}{25}} = \frac{12}{24} = \frac{1}{2} \] ### Final Answer The value of \( ar^2 + ar^4 + ar^6 + \ldots \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find out AR and MR :

If s=a+ar+ar^(2)+ar^(3)+.......oo then s_(oo)= . (|r|<1)

a+ar_(1)+ar_(1)^(2)+...+oo and a+ar_(2)+ar_(2)^(2)+...+oo be two infinite series of positive numbers with the same first term.The sum of the first series is r_(1) and the sum of the second series r_(2). Then the value of (r_(1)+r_(2)) is

Let sum of ten numbers a, ar, ar^(2) , ... Ar^(9) is 18 and sum of their reciprocal is 6 then product of these ten numbers is.

Show that the products of the corresponding terms of the sequences a, ar,ar^(2),...,ar^(n-1) and A,AR,AR^(2),...,AR^(n-1) form a G.P,and find the common ratio.

In the given figure, DE || BC, DE= 3 cm, BC = 9 cm and ar (DADE) = 30cm^2 . Find ar (BCED).

Show that the products of the corresponding terms of the sequences a,ar,ar^(2),...,ar^(n-1) and a,AR,AR^(2),...,AR^(n-1) form a G.P,and find the common ratio.

In the given figure ar (Delta ABC)=" ar "(Delta ADE) . AC is the median of Delta ADE . If ar (ACE) =14 cm^(2)" then ar "(Delta ABC) = ?

In figure, if ar( Delta ABC) = 28 cm^(2) , then find ar( I I^(gm) AEDF).

In DeltaABC ~ Delta DEF and ar (DeltaABC) = 100 cm^(2), ar (Delta DEF) = 196 cm^(2) and DE = 7 cm , then find AB.