Home
Class 12
MATHS
If A and B are two square matrices of or...

If A and B are two square matrices of order `2xx2` such that `A=[(-1,0),(0,1)] , B=[(1,0),(i,1)]` (where `i=sqrt(-1)`) and `A^TB^2021A=Q` then value of `AQA^T` is

A

`[(1,0),(i,1)]`

B

`[(1,0),(2021i,1)]`

C

`[(1,0),(1,1)]`

D

`[(1,0),(2020i,1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( AQA^T \) given that \( A^T B^{2021} A = Q \), where \( A \) and \( B \) are defined as follows: \[ A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^T \) The transpose of matrix \( A \) is: \[ A^T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 2: Find \( B^{2021} \) To find \( B^{2021} \), we first observe the pattern in the powers of \( B \): 1. **Calculate \( B^2 \)**: \[ B^2 = B \cdot B = \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + 0 \cdot i & 1 \cdot 0 + 0 \cdot 1 \\ i \cdot 1 + 1 \cdot i & i \cdot 0 + 1 \cdot 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 2i & 1 \end{pmatrix} \] 2. **Calculate \( B^3 \)**: \[ B^3 = B^2 \cdot B = \begin{pmatrix} 1 & 0 \\ 2i & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ i & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3i & 1 \end{pmatrix} \] From this, we can see a pattern. It appears that: \[ B^n = \begin{pmatrix} 1 & 0 \\ ni & 1 \end{pmatrix} \] Thus, for \( n = 2021 \): \[ B^{2021} = \begin{pmatrix} 1 & 0 \\ 2021i & 1 \end{pmatrix} \] ### Step 3: Substitute \( B^{2021} \) into \( A^T B^{2021} A \) Now we substitute \( B^{2021} \) into the equation \( A^T B^{2021} A \): \[ A^T B^{2021} A = A^T \begin{pmatrix} 1 & 0 \\ 2021i & 1 \end{pmatrix} A \] Calculating \( A^T B^{2021} \): \[ A^T B^{2021} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2021i & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2021i \end{pmatrix} \] Now, we multiply this result by \( A \): \[ A^T B^{2021} A = \begin{pmatrix} -1 & 0 \\ 0 & 2021i \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} \] This gives us \( Q \): \[ Q = \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} \] ### Step 4: Calculate \( AQA^T \) Now we need to find \( AQA^T \): \[ AQA^T = A \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} A^T \] Calculating \( A \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} \): \[ A \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 2021i \end{pmatrix} \] Now, multiplying by \( A^T \): \[ AQA^T = \begin{pmatrix} -1 & 0 \\ 0 & 2021i \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} \] ### Final Result Thus, the value of \( AQA^T \) is: \[ AQA^T = \begin{pmatrix} 1 & 0 \\ 0 & 2021i \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are square matrices of the same order such that B=-A^(-1)BA, then (A+B)^(2)

If A and B are square matrices of the same order and AB=3I , then A^(-1)=

If A & B are square matrices of order 2 such that A+adj(B^T)=[[2,1],[1,2]] & A^T-adj(B)=[[0,1],[1,0]] then

Let A and B are square matrices of order 3 such that A^(2)=4I(|A|<0) and AB^(T)=adj(A) , then |B|=

A and B are two square matrices of same order. If AB =B^(-1), " then " A^(-1) =____.

If A=[[0,0],[0,i]], where i=sqrt(-1), then

" If "A" and "B" are two square matrices of same order such that "|B|!=0" ,then "(B^(-1)AB)^(5)" is equal to "