Home
Class 14
MATHS
If A + B = 45°, then the value of 2(1 + ...

If A + B = 45°, then the value of 2(1 + tan A) (1 + tan B) is:

A

4

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(2(1 + \tan A)(1 + \tan B)\) given that \(A + B = 45^\circ\). ### Step-by-step Solution: 1. **Use the identity for tangent**: Since \(A + B = 45^\circ\), we can use the tangent addition formula: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Therefore, we have: \[ \tan(45^\circ) = 1 \] This gives us the equation: \[ 1 = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] 2. **Cross-multiply to simplify**: Cross-multiplying gives: \[ 1 - \tan A \tan B = \tan A + \tan B \] Rearranging this, we get: \[ 1 = \tan A + \tan B + \tan A \tan B \] 3. **Express \(1 + \tan A\) and \(1 + \tan B\)**: We can express \(1 + \tan A\) and \(1 + \tan B\) as: \[ 1 + \tan A = 1 + \tan A \] \[ 1 + \tan B = 1 + \tan B \] 4. **Calculate \(2(1 + \tan A)(1 + \tan B)\)**: Now, we can expand \(2(1 + \tan A)(1 + \tan B)\): \[ 2(1 + \tan A)(1 + \tan B) = 2[(1 + \tan A) + (1 + \tan B) + \tan A \tan B] \] Using the identity from step 2, we know that: \[ \tan A + \tan B + \tan A \tan B = 1 \] Thus: \[ 2(1 + \tan A)(1 + \tan B) = 2(1 + 1) = 2 \times 2 = 4 \] 5. **Final Result**: Therefore, the value of \(2(1 + \tan A)(1 + \tan B)\) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B=45^(@), then the value of (1+tan A)(1+tan B) is

If A + B = 45^(@) , then find the value of (1+tan A)(1+ tan B)

If sin A = (3)/(5) and cos B = (12)/(13) . Then the value of (tan A - tan B)/(1 + tan A tan B) is equal to

In a triangle tan A + tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

If any /_ABC,tan A+tan B+tan C=6 and tan A tan B=2, then the values of tan A,tan B and tan C are respectively' (A)1,2,3(B)3,2,1(C)2,1,3(D)1,2,0

If a > b > 0,than the value of tan^(-1) (a/b) + tan^(-1) ((a+b)/(a - b)) depends on

If A+B+ C=(pi)/(2) then what is the value of tan A tan B +tan B. tan C + tan C tan A?

If tan(A+B)=p&tan(A-B)=q , then the value of tan 2A is

If tanA=m/(m-1) and tan(B)=n , find the values of tan 2A and tan 2B .