Home
Class 14
MATHS
If x = 4 cos A + 5 sin A and y = 4 sin A...

If x = 4 cos A + 5 sin A and y = 4 sin A - 5 cos A, then the value of `x^(2) + y^(2)` is:

A

25

B

0

C

16

D

41

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 \) given the equations: \[ x = 4 \cos A + 5 \sin A \] \[ y = 4 \sin A - 5 \cos A \] ### Step 1: Calculate \( x^2 \) and \( y^2 \) First, we calculate \( x^2 \) and \( y^2 \): \[ x^2 = (4 \cos A + 5 \sin A)^2 = (4 \cos A)^2 + 2(4 \cos A)(5 \sin A) + (5 \sin A)^2 \] \[ = 16 \cos^2 A + 40 \cos A \sin A + 25 \sin^2 A \] \[ y^2 = (4 \sin A - 5 \cos A)^2 = (4 \sin A)^2 - 2(4 \sin A)(5 \cos A) + (5 \cos A)^2 \] \[ = 16 \sin^2 A - 40 \sin A \cos A + 25 \cos^2 A \] ### Step 2: Combine \( x^2 \) and \( y^2 \) Now, we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (16 \cos^2 A + 40 \cos A \sin A + 25 \sin^2 A) + (16 \sin^2 A - 40 \sin A \cos A + 25 \cos^2 A) \] ### Step 3: Simplify the expression Combining like terms: \[ = (16 \cos^2 A + 25 \cos^2 A) + (16 \sin^2 A + 25 \sin^2 A) + (40 \cos A \sin A - 40 \sin A \cos A) \] \[ = 41 \cos^2 A + 41 \sin^2 A \] ### Step 4: Apply the Pythagorean identity Using the identity \( \cos^2 A + \sin^2 A = 1 \): \[ x^2 + y^2 = 41(\cos^2 A + \sin^2 A) = 41 \cdot 1 = 41 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{41} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x =4 cos A + 5 sin A and y = 4 sin A - 5cos A , then the value of (x^(2) + y^2) is :

If cos x + cos y =2 , then the value of sinx + sin y is

If cos x + cos y =2, then value of sin x + sin y is

If sin (x+y)=cos (x-y), then the value of cos^2x is :

If sin x + sin y = a, cos x + cos y = b, then what is the value of cos (x-y) ?

If 3sin x+12sin y+4cos x+5cos y=18 then the value of tan(x+y) is

If x = 3 sin theta + 4 cos theta and y = 3 cos theta - 4 sin theta then prove that x^(2) + y^(2) = 25 .