Home
Class 14
MATHS
If tantheta-cottheta=cosectheta, 0^(@) l...

If `tantheta-cottheta=cosectheta, 0^(@) lt theta lt 90^(@)`, then what is the value of `(2tantheta-costheta)/(sqrt(3)cottheta+sectheta)`?

A

`(2sqrt(3)-1)/3`

B

`(23(2sqrt(3)-1))/3`

C

`(4sqrt(3)-1)/6`

D

`(3sqrt(3)-1)/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \tan \theta - \cot \theta = \csc \theta \] ### Step 1: Rewrite the trigonometric functions We can express \(\tan \theta\), \(\cot \theta\), and \(\csc \theta\) in terms of sine and cosine: \[ \tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \csc \theta = \frac{1}{\sin \theta} \] Substituting these into the equation gives: \[ \frac{\sin \theta}{\cos \theta} - \frac{\cos \theta}{\sin \theta} = \frac{1}{\sin \theta} \] ### Step 2: Find a common denominator The left-hand side can be simplified by finding a common denominator: \[ \frac{\sin^2 \theta - \cos^2 \theta}{\sin \theta \cos \theta} = \frac{1}{\sin \theta} \] ### Step 3: Cross-multiply Cross-multiplying gives: \[ (\sin^2 \theta - \cos^2 \theta) = \frac{\sin \theta \cos \theta}{\sin \theta} \] This simplifies to: \[ \sin^2 \theta - \cos^2 \theta = \cos \theta \] ### Step 4: Rearrange the equation Rearranging the equation gives: \[ \sin^2 \theta - \cos^2 \theta - \cos \theta = 0 \] ### Step 5: Substitute \(\sin^2 \theta\) Using the Pythagorean identity \(\sin^2 \theta = 1 - \cos^2 \theta\): \[ (1 - \cos^2 \theta) - \cos^2 \theta - \cos \theta = 0 \] This simplifies to: \[ 1 - 2\cos^2 \theta - \cos \theta = 0 \] ### Step 6: Rearranging into a standard quadratic form Rearranging gives: \[ 2\cos^2 \theta + \cos \theta - 1 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): Here, \(a = 2\), \(b = 1\), and \(c = -1\): \[ \cos \theta = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \] \[ = \frac{-1 \pm \sqrt{1 + 8}}{4} \] \[ = \frac{-1 \pm 3}{4} \] Calculating the two possible values: 1. \(\cos \theta = \frac{2}{4} = \frac{1}{2}\) (valid since \(0 < \theta < 90\)) 2. \(\cos \theta = \frac{-4}{4} = -1\) (not valid) Thus, \(\cos \theta = \frac{1}{2}\) implies: \[ \theta = 60^\circ \] ### Step 8: Calculate \(\tan \theta\) and \(\cot \theta\) Now, we can find \(\tan \theta\) and \(\cot \theta\): \[ \tan 60^\circ = \sqrt{3}, \quad \cot 60^\circ = \frac{1}{\sqrt{3}} \] ### Step 9: Substitute into the expression Now we substitute into the expression we need to evaluate: \[ \frac{2\tan \theta - \cos \theta}{\sqrt{3}\cot \theta + \sec \theta} \] Calculating each component: - \(2\tan 60^\circ = 2\sqrt{3}\) - \(\cos 60^\circ = \frac{1}{2}\) - \(\sqrt{3}\cot 60^\circ = \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1\) - \(\sec 60^\circ = \frac{1}{\cos 60^\circ} = 2\) Thus, the expression becomes: \[ \frac{2\sqrt{3} - \frac{1}{2}}{1 + 2} = \frac{2\sqrt{3} - \frac{1}{2}}{3} \] ### Step 10: Simplify the numerator The numerator can be simplified: \[ 2\sqrt{3} - \frac{1}{2} = \frac{4\sqrt{3} - 1}{2} \] So the final expression is: \[ \frac{\frac{4\sqrt{3} - 1}{2}}{3} = \frac{4\sqrt{3} - 1}{6} \] ### Final Result Thus, the value of the expression is: \[ \frac{4\sqrt{3} - 1}{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((cottheta+cosec theta-1))/((cottheta-cosectheta+1)) ?

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If tantheta-cottheta=0(0^(@)ltthetalt90^(@)) , then the value of sintheta-costheta is

If tantheta = 3 , where 0^@ltthetalt90^@ , then find the value of (sintheta+costheta)/(sectheta+cosectheta)

If (tantheta+cottheta)/(tantheta-cottheta)=2,(0^(@)lethetale90^(@)) , then the value of sintheta is

What is the value of (sintheta)/(1-cottheta)-(cos theta)/(1-tantheta) ?

(1+cottheta-cosectheta)(1+tantheta+sectheta)=?

What is the value of (sectheta)/(tantheta+cottheta) ?

If 2cos^(2)theta-5costheta+2=0,0^(@)ltthetalt90^(@) then the value of (1)/((cosectheta+cottheta)) is :