Home
Class 14
MATHS
(a+ b + c- d)^2-(a-b-c+d)^2 =?...

`(a+ b + c- d)^2-(a-b-c+d)^2` =?

A

`4a(b+c-d)`

B

`2a(b+c+d)`

C

`2a(b-c+d)`

D

`2a(b+c-d)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If   ( a -5 )^2 + ( b - c )^2 + ( c - d )^2 + ( b + c + d - 9 )^2 = 0 , then find the value of ( a + b + c ) ( b + c + d ) is

The positive square root of ((a + b) ^(2) - (c + d) ^(2))/( (a + b) ^(2) - (c - d ) ^(2)) xx ((a + b + c) ^(2) - d ^(2))/( (a + b -c ) ^(2 ) - d ^(2)) using factorisation is:

If a,b,c,d are in G.P., then the value of (a-c)^2+(b-c)^2+(b-d)^2-(a-d)^2 is (A) 0 (B) 1 (C) a+d (D) a-d

a, b are the real roots of x2+ px +1-0 and c, d are the real roots of 2 x + qx + 1 = 0 then (a-c)(h-c)(a + d)(b + d) is divisible by n) a+b+c+d (b) a +b-c-d (d) a -b-c-d (c) a-b+c-d

If a,b,c,d………are in G.P., then show that (a-b)^2, (b-c)^2, (c-d)^2 are in G.P.

if (2a+3b+4c+5d)/(2a-3b-4c-5d)=(2a-3b+4c-5d)/(2a-3b-4c+5d) , then show that a,3b,2c and 5d are in proportion.

If a, b, c, d are in GP, prove that (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2) .

If (a-2b-3c+4d)(a+2b+3c+4d) = (a+2b-3c-4d)(a-2b+3c-4d) then 2ad =