Home
Class 14
MATHS
If 0 lt A , B lt 45^(@) cos (A+B) = 24 /...

If `0 lt A , B lt 45^(@)` cos (A+B) = 24 /25 and sin (A-B) = 15/17 then tan 2 A is

A

A.0

B

B.1

C

C.`213//4`

D

D.`416//87`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \tan 2A \) given the conditions: 1. \( \cos(A + B) = \frac{24}{25} \) 2. \( \sin(A - B) = \frac{15}{17} \) ### Step 1: Find \( \sin(A + B) \) and \( \sin(A - B) \) Using the Pythagorean identity, we can find \( \sin(A + B) \) and \( \cos(A + B) \): \[ \sin^2(A + B) + \cos^2(A + B) = 1 \] Given \( \cos(A + B) = \frac{24}{25} \): \[ \sin^2(A + B) = 1 - \left(\frac{24}{25}\right)^2 = 1 - \frac{576}{625} = \frac{49}{625} \] Thus, \[ \sin(A + B) = \frac{7}{25} \] Similarly, for \( \sin(A - B) \): Given \( \sin(A - B) = \frac{15}{17} \): Using the Pythagorean identity again: \[ \cos^2(A - B) = 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{64}{289} \] Thus, \[ \cos(A - B) = \frac{8}{17} \] ### Step 2: Use the tangent addition formula We can find \( \tan A \) and \( \tan B \) using the following formulas: \[ \tan(A + B) = \frac{\sin(A + B)}{\cos(A + B)} = \frac{\frac{7}{25}}{\frac{24}{25}} = \frac{7}{24} \] \[ \tan(A - B) = \frac{\sin(A - B)}{\cos(A - B)} = \frac{\frac{15}{17}}{\frac{8}{17}} = \frac{15}{8} \] ### Step 3: Use the formula for \( \tan 2A \) Using the formula for \( \tan 2A \): \[ \tan 2A = \frac{\tan(A + B) + \tan(A - B)}{1 - \tan(A + B) \tan(A - B)} \] Substituting the values we found: \[ \tan 2A = \frac{\frac{7}{24} + \frac{15}{8}}{1 - \left(\frac{7}{24} \cdot \frac{15}{8}\right)} \] ### Step 4: Simplify the expression First, find a common denominator for the numerator: \[ \frac{7}{24} + \frac{15}{8} = \frac{7}{24} + \frac{45}{24} = \frac{52}{24} = \frac{13}{6} \] Now calculate the denominator: \[ 1 - \left(\frac{7}{24} \cdot \frac{15}{8}\right) = 1 - \frac{105}{192} = \frac{192 - 105}{192} = \frac{87}{192} \] ### Step 5: Final calculation Now substituting back into the formula for \( \tan 2A \): \[ \tan 2A = \frac{\frac{13}{6}}{\frac{87}{192}} = \frac{13 \cdot 192}{6 \cdot 87} = \frac{13 \cdot 32}{87} = \frac{416}{87} \] Thus, the final answer is: \[ \tan 2A = \frac{416}{87} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

If 0 lt beta lt alpha lt gamma and cos(alpha + beta) = 4/5 , sin(alpha - beta)= 5/13 then tan 2alpha =________

If sin A=a cos B and cos A=b sin B then tan^(2)B =

If cos A = tan B , cos B = tan C and cos C = tan A then show that sin A = sin B = sin C = 2sin 18^circ .

If sin(A + B) = 1 and 2 sin (A - B) = 1, where 0 lt A, B lt pi/2 then what is tan A:tan B equal to?

0 lt A lt 90^@ : 0 lt B lt 90^@ , sin A=12/13 and cos B= 4/5 . Find the vaue of sin (A+B).

If tan (A + B) = sqrt(3) and tan (A - B) = 0, 0^(@) lt A + B le 90^(@) , find sin (A + B) and cos (A - B).

If 0 lt P(A) lt 1, 0 lt P(B) lt 1 and P(A cup B)=P(A)+P(B)-P(A)P(B) , then

(sin A + sin B) / (cos A + cos B) = tan ((A + B) / (2))

If tan A=(1-cos B)/(sin B), then tan2A=tan B