Home
Class 14
MATHS
cosecθ//(cosecθ + 1) + cosecθ//(cosecθ ...

`cosecθ//(cosecθ + 1) + cosecθ//(cosecθ - 1) - 2tan^(2)θ`

A

`1//2`

B

0

C

`-2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{\csc \theta}{\csc \theta + 1} + \frac{\csc \theta}{\csc \theta - 1} - 2 \tan^2 \theta \), we will break it down step by step. ### Step 1: Rewrite Cosecant and Tangent Recall that: - \( \csc \theta = \frac{1}{\sin \theta} \) - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) Thus, \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). ### Step 2: Substitute Cosecant Substituting \( \csc \theta \) into the expression, we have: \[ \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} + 1} + \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - 1} - 2 \frac{\sin^2 \theta}{\cos^2 \theta} \] ### Step 3: Simplify the First Two Terms Let's simplify the first term: \[ \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} + 1} = \frac{1}{1 + \sin \theta} \] And the second term: \[ \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} - 1} = \frac{1}{1 - \sin \theta} \] So, we can rewrite the expression as: \[ \frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} - 2 \frac{\sin^2 \theta}{\cos^2 \theta} \] ### Step 4: Combine the First Two Terms To combine the first two fractions: \[ \frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} = \frac{(1 - \sin \theta) + (1 + \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)} = \frac{2}{1 - \sin^2 \theta} = \frac{2}{\cos^2 \theta} \] ### Step 5: Substitute Back Now, substituting back into our expression gives: \[ \frac{2}{\cos^2 \theta} - 2 \frac{\sin^2 \theta}{\cos^2 \theta} \] ### Step 6: Factor Out Common Terms Factoring out \( \frac{2}{\cos^2 \theta} \): \[ \frac{2}{\cos^2 \theta} (1 - \sin^2 \theta) = \frac{2}{\cos^2 \theta} \cos^2 \theta = 2 \] ### Final Answer Thus, the final answer is: \[ \boxed{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Sec^2θ + cosec^2θ = sec^2θ * cosec^2θ

The value of (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) is : (sec^(2)θ /cosec^(2)θ) + (cosec^(2)θ /sec^(2)θ )-(sec^(2)θ + cosec^(2)θ) का मान बराबर है :

If secθ + tanθ = p , (p gt 1) ,then (cosecθ+1)/(cosecθ -1) = ? यदि secθ + tanθ = p , (p gt 1) ,तो (cosecθ+1)/(cosecθ -1) = ? का मान क्या है?

If sqrt((1-cosθ)/(1+cosθ)) xx sqrt((cosecθ -cot θ)/(cosecθ +cot θ))= (1-r)/(1+r) , then the value of r is: यदि sqrt((1-cosθ)/(1+cosθ)) xx sqrt((cosecθ -cot θ)/(cosecθ +cot θ))= (1-r)/(1+r) है तो r का मानहैः

The value of ( 1 + cotθ – cosecθ ) ( 1 + cosθ + sinθ )secθ = ? ( 1 + cotθ – cosecθ ) ( 1 + cosθ + sinθ )secθ का मान है :

What is the value of cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ ? cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ का मान क्या है?

If cotθ = sqrt6 , then the value of is: (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) यदि cotθ = sqrt6 है तो (cosec^(2)θ + sec^(2)θ)/(cosec^(2)θ − sec^(2)θ) का मान हैः

If cosec θ – sin θ = l and sec θ – cos θ = m, then l2 m2 (l2 + m2 + 3) =?

If cosecθ=secθ, then value of θ is

If ((sinθ−cosecθ)(cosθ−secθ))/(tan^(2)θ -sin^(2)θ) = r^3 , then r=? यदि ((sinθ−cosecθ)(cosθ−secθ))/(tan^(2)θ -sin^(2)θ) = r^3 है तो r बराबर हैः