Home
Class 14
MATHS
If 8(x+y)^(3)-27(x-y)^(3)=(5y-x)(Ax^(2)+...

If `8(x+y)^(3)-27(x-y)^(3)=(5y-x)(Ax^(2)+By^(2)+Cxy)` then find `A+B-C`.

A

32

B

18

C

26

D

36

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 8(x+y)^3 - 27(x-y)^3 = (5y-x)(Ax^2 + By^2 + Cxy) \) and find \( A + B - C \), we will follow these steps: ### Step 1: Expand the Left-Hand Side (LHS) We start with the left-hand side of the equation: \[ 8(x+y)^3 - 27(x-y)^3 \] Using the binomial expansion: \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \] where \( a = 2(x+y) \) and \( b = 3(x-y) \). Thus, we can rewrite: \[ 8(x+y)^3 = (2(x+y))^3 = 2^3(x+y)^3 = 8(x+y)^3 \] \[ 27(x-y)^3 = (3(x-y))^3 = 27(x-y)^3 \] Now, we can express the LHS as: \[ = (2(x+y) - 3(x-y))((2(x+y))^2 + 2(x+y)(3(x-y)) + (3(x-y))^2) \] ### Step 2: Simplify \( 2(x+y) - 3(x-y) \) Calculating \( 2(x+y) - 3(x-y) \): \[ = 2x + 2y - 3x + 3y = -x + 5y \] ### Step 3: Calculate \( (2(x+y))^2 + 2(x+y)(3(x-y)) + (3(x-y))^2 \) Calculating each term: 1. \( (2(x+y))^2 = 4(x+y)^2 = 4(x^2 + 2xy + y^2) = 4x^2 + 8xy + 4y^2 \) 2. \( 2(x+y)(3(x-y)) = 6(x+y)(x-y) = 6(x^2 - y^2) = 6x^2 - 6y^2 \) 3. \( (3(x-y))^2 = 9(x-y)^2 = 9(x^2 - 2xy + y^2) = 9x^2 - 18xy + 9y^2 \) Now, combine these: \[ 4x^2 + 8xy + 4y^2 + 6x^2 - 6y^2 + 9x^2 - 18xy + 9y^2 \] Combine like terms: \[ (4x^2 + 6x^2 + 9x^2) + (4y^2 - 6y^2 + 9y^2) + (8xy - 18xy) \] \[ = 19x^2 + 7y^2 - 10xy \] ### Step 4: Combine LHS Now, substituting back into the LHS: \[ LHS = (-x + 5y)(19x^2 + 7y^2 - 10xy) \] ### Step 5: Compare with Right-Hand Side (RHS) The RHS is given as: \[ (5y - x)(Ax^2 + By^2 + Cxy) \] From our LHS, we can identify: - \( A = 19 \) - \( B = 7 \) - \( C = -10 \) ### Step 6: Calculate \( A + B - C \) Now, we calculate: \[ A + B - C = 19 + 7 - (-10) = 19 + 7 + 10 = 36 \] ### Final Answer Thus, the value of \( A + B - C \) is: \[ \boxed{36} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 27(x+y)^3-8(x-y)^3=( x+ 5y)(Ax^2+By^2 +Cxy) , then what is the value of (A+ B -C) ? यदि 27(x+y)^3-8(x-y)^3=( x+ 5y)(Ax^2+By^2 +Cxy) , तो (A+ B -C) का मान क्या होगा ?

If [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy , then the value of (A + B + C ) is: यदि [8(x+y)^3- 27(x-y)^3] div (5y-x) = Ax^2+Cy^2+Bxy है, तो (A + B + C) का मान ज्ञात करें|

If (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2) , then the valueof (2A + B - C) is : यदि (8x^3-27y^3)div (2x-3y)= (Ax^2+Bxy+Cy^2) है, तो (2A + B - C) का मान क्या होगा ?