Home
Class 14
MATHS
cos^(2)thetadiv(cot^(2)theta-cos^(2)thet...

`cos^(2)thetadiv(cot^(2)theta-cos^(2)theta)=3`, Find `tantheta+cosectheta`

A

1.)`3√5`

B

2.)`5//√3`

C

3.) `5√3`

D

4.) `√3//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\cos^2 \theta}{\cot^2 \theta - \cos^2 \theta} = 3\) and find \( \tan \theta + \csc \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \frac{\cos^2 \theta}{\cot^2 \theta - \cos^2 \theta} = 3 \] We can rewrite \(\cot^2 \theta\) in terms of sine and cosine: \[ \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] Thus, we can substitute this into our equation: \[ \frac{\cos^2 \theta}{\frac{\cos^2 \theta}{\sin^2 \theta} - \cos^2 \theta} = 3 \] ### Step 2: Simplify the denominator Now, simplify the denominator: \[ \frac{\cos^2 \theta}{\frac{\cos^2 \theta - \cos^2 \theta \sin^2 \theta}{\sin^2 \theta}} = 3 \] This simplifies to: \[ \frac{\cos^2 \theta \sin^2 \theta}{\cos^2 \theta (1 - \sin^2 \theta)} = 3 \] Since \(1 - \sin^2 \theta = \cos^2 \theta\), we have: \[ \frac{\sin^2 \theta}{\cos^2 \theta} = 3 \] ### Step 3: Relate to tangent The left side can be rewritten as: \[ \tan^2 \theta = 3 \] Taking the square root gives: \[ \tan \theta = \sqrt{3} \] ### Step 4: Find \(\csc \theta\) Using \(\tan \theta = \frac{\sin \theta}{\cos \theta}\), we know: \[ \sin \theta = \sqrt{3} \cos \theta \] Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\sin \theta\): \[ (\sqrt{3} \cos \theta)^2 + \cos^2 \theta = 1 \] \[ 3 \cos^2 \theta + \cos^2 \theta = 1 \] \[ 4 \cos^2 \theta = 1 \implies \cos^2 \theta = \frac{1}{4} \implies \cos \theta = \frac{1}{2} \] Thus, \(\sin \theta = \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2}\). ### Step 5: Calculate \(\csc \theta\) Now, we can find \(\csc \theta\): \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] ### Step 6: Find \( \tan \theta + \csc \theta \) Now, we can find \( \tan \theta + \csc \theta \): \[ \tan \theta + \csc \theta = \sqrt{3} + \frac{2}{\sqrt{3}} \] To combine these, we can write \(\sqrt{3}\) as \(\frac{3}{\sqrt{3}}\): \[ \tan \theta + \csc \theta = \frac{3}{\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{5}{\sqrt{3}} \] ### Final Answer Thus, the final answer is: \[ \tan \theta + \csc \theta = \frac{5}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1 - cos^(2)theta)cot^(2)theta

If theta "is theta " and (cos^(2)theta)/(cot^(2) theta -cos^(2) theta) =3 then theta is equal to

If (cos^(2)theta)/(cot^(2)theta-cos^(2)theta)=3and0^(@)ltthetalt90^(@) , then find the value of theta .

If (cos^(2) theta)/(cot^(2) theta - cos^(2) theta) = 3 and 0^(@) lt theta lt 90^(@) , then the value of theta is

cot^(2)theta-cos^(2)theta=cot^(2)theta*cos^(2)theta

Prove that (tan^(3)theta)/(1+tan^(2)theta)+(cot^(3)theta)/(1+cot^(2)theta)=sec theta cos ec theta-2sin theta cos theta

Prove: (tan^(3)theta)/(1+tan^(2)theta)+(cot^(3)theta)/(1+cot^(2)theta)=sec theta cos ec theta-2sin theta cos theta

If tan^(2)theta+cot^(2)theta=14 , then find sectheta.cosectheta=?

cot^(4)theta+cot^(2)theta=cos ec^(4)theta-cos ec^(2)theta