Home
Class 14
MATHS
If x + y = 4 and 1/x + 1/y = 16/15 find ...

If `x + y = 4 and 1/x + 1/y = 16/15` find `x^(3) + y^(3)`.

A

19

B

17

C

15

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( x^3 + y^3 \) given the equations \( x + y = 4 \) and \( \frac{1}{x} + \frac{1}{y} = \frac{16}{15} \). ### Step-by-Step Solution: 1. **Use the given equations**: We know that: \[ x + y = 4 \] and \[ \frac{1}{x} + \frac{1}{y} = \frac{16}{15} \] 2. **Rewrite the second equation**: The equation \( \frac{1}{x} + \frac{1}{y} \) can be rewritten using the formula: \[ \frac{1}{x} + \frac{1}{y} = \frac{x + y}{xy} \] Thus, we can write: \[ \frac{x + y}{xy} = \frac{16}{15} \] Substituting \( x + y = 4 \): \[ \frac{4}{xy} = \frac{16}{15} \] 3. **Solve for \( xy \)**: Cross-multiplying gives: \[ 4 \cdot 15 = 16 \cdot xy \] Therefore: \[ 60 = 16xy \] Dividing both sides by 16: \[ xy = \frac{60}{16} = \frac{15}{4} \] 4. **Use the formula for \( x^3 + y^3 \)**: The formula for \( x^3 + y^3 \) is: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] We already have \( x + y = 4 \) and \( xy = \frac{15}{4} \). 5. **Calculate \( x^2 + y^2 \)**: We can find \( x^2 + y^2 \) using the identity: \[ x^2 + y^2 = (x + y)^2 - 2xy \] Substituting the known values: \[ x^2 + y^2 = 4^2 - 2 \cdot \frac{15}{4} = 16 - \frac{30}{4} = 16 - 7.5 = 8.5 = \frac{17}{2} \] 6. **Substitute into the formula**: Now we can substitute \( x^2 + y^2 \) into the formula for \( x^3 + y^3 \): \[ x^3 + y^3 = (x + y) \left( x^2 + y^2 - xy \right) \] \[ = 4 \left( \frac{17}{2} - \frac{15}{4} \right) \] 7. **Simplify the expression**: First, we need a common denominator to simplify: \[ \frac{17}{2} = \frac{34}{4} \] Therefore: \[ x^2 + y^2 - xy = \frac{34}{4} - \frac{15}{4} = \frac{19}{4} \] Now substituting back: \[ x^3 + y^3 = 4 \cdot \frac{19}{4} = 19 \] ### Final Answer: Thus, the value of \( x^3 + y^3 \) is \( \boxed{19} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

x+y=2 and (1)/(x)+(1)/(y)=2. FInd x^(3)+y^(3)

If x = 1, y = - 2 and z = 3. find the value of (i) x^(3) + y^(3) + z^3-3xyz (ii) 3xy^(4) - 15 x^(2) y + 4z

If x/6+y/15=4 and x/3-y/12=4 3/4 find x and y.

If x^3+y^3=16 and x + y = 4, then find the value of x^4+y^4 . यदि x^3+y^3=16 और x + y = 4 है, तो x^4+y^4 का मान ज्ञात करें

If (30x + 2y)/(4x + y) = (16)/(3) , then find x:y.

If x^(3) + y^(3) = 16 and x + y = 4 , then the value of x^(4) + y^(4) is :

If x=3 and y=1 , find the value of x^x + y^y .