Home
Class 14
MATHS
In a circle O is the center and the leng...

In a circle O is the center and the length of diameter and one chord is 25 cm and 21 cm respectively. Then find the perpendicular distance from center to the chord.

A

(A). `√46 cm`

B

(B). `√23 cm`

C

(C). `√21 cm`

D

(D). `√34 cm`

Text Solution

AI Generated Solution

The correct Answer is:
To find the perpendicular distance from the center of the circle to the chord, we can follow these steps: ### Step 1: Identify the given values - The diameter of the circle is 25 cm. - The length of the chord is 21 cm. ### Step 2: Calculate the radius of the circle The radius (r) is half of the diameter. Therefore: \[ r = \frac{\text{Diameter}}{2} = \frac{25 \text{ cm}}{2} = 12.5 \text{ cm} \] ### Step 3: Divide the chord into two equal parts Since the perpendicular from the center of the circle to the chord bisects the chord, we can find the length of half the chord (BD): \[ BD = \frac{\text{Length of chord}}{2} = \frac{21 \text{ cm}}{2} = 10.5 \text{ cm} \] ### Step 4: Apply the Pythagorean theorem In the right triangle ODB, where: - \( OB \) is the hypotenuse (the radius of the circle), - \( BD \) is one leg (half the chord), - \( OD \) is the other leg (the perpendicular distance we want to find). According to the Pythagorean theorem: \[ OB^2 = OD^2 + BD^2 \] ### Step 5: Substitute the known values into the equation Substituting the values we have: \[ (12.5)^2 = OD^2 + (10.5)^2 \] Calculating the squares: \[ 156.25 = OD^2 + 110.25 \] ### Step 6: Solve for \( OD^2 \) Rearranging the equation to solve for \( OD^2 \): \[ OD^2 = 156.25 - 110.25 = 46 \] ### Step 7: Calculate \( OD \) Taking the square root to find \( OD \): \[ OD = \sqrt{46} \text{ cm} \] ### Final Answer The perpendicular distance from the center of the circle to the chord is: \[ OD \approx 6.78 \text{ cm} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

(i) Find the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13cm. (ii) The length of a chord is 16 cm of a circle of diameter 2 cm. find the perpendicular distance of this chord from the centre of the circle.

In a circle of diameter 40cm the length of a chord is 20cm Find the length of the minor arc

The radius of a circle is 10 cm and the perpendicular form the centre to a chord is 8cm. Find the length of the chord. (ii) The radius of a circle is 10 cm. its one chord is 16 cm long. Find the perpendicular distance of this chord form the centre. (iii) in the adjoining figure O is the centre of circle. the radius of circle is 17 cm . if OC=8cm, then find the length of chord AB. (iv) In the adjoining figure, OMbotAB , radius OC=5cm and chord AB=8cm .Find the length of OM.

In the adjoining figure, O is the centre of the centre of the circle. If diameter AC=26cm and chord AB=10cm, then find the distances of the chord AB from the centre of the circle.

In a circle of diameter 40cm. the length of a chord is 20cm. Find the length of minor arc of the chord.

In a circle of diameter44 cm, the length of a chord is 22 cm. What is the length of minor arc of the chord ?

The radius of a circle with centere P is 25 cm . The length of a chord of the same circle is 48 cm . Find the distance of the chord from the centre P of the circle.

The radius of a circle is 8cm and the length of one of its chords is 12cm. Find the distance of the chord from the centre.

Recommended Questions
  1. In a circle O is the center and the length of diameter and one chord i...

    Text Solution

    |

  2. (b) निम्न चित्र में केंद्र O तथा व्यास 34 सेमी वाले वृत्त की एक जीवा A...

    Text Solution

    |

  3. चित्र में O , वृत्त का केन्द्र, जीवा AB = 10 सेमी तथा व्यास AC = 26 स...

    Text Solution

    |

  4. चित्र में O वृत्त का केन्द्र है तथा एक जीवा AB = 24 सेमी है। जीवा की ...

    Text Solution

    |

  5. चित्र में O वृत्त का केन्द्र है तथा एक जीवा AB = 30 सेमी है तथा इसका व...

    Text Solution

    |

  6. किसी वृत्त कि त्रिज्या 13 सेमी. है । यदि इसकी एक जीवा की लम्बाई 10 सेम...

    Text Solution

    |

  7. एक वृत्त की त्रिज्या 8 सेमी. है । यदि इसकी एक जीवा की लम्बाई 12 सेमी. ...

    Text Solution

    |

  8. केंद्र O और त्रिज्या 7.5 cm वाले वृत्त की एक जीवा की लम्बाई 9 cm है| इ...

    Text Solution

    |

  9. (a) किसी वृत्त की त्रिज्या 10 सेमी एवं इसकी एक जीवा की लम्बाई 16 सेमी ...

    Text Solution

    |