Home
Class 14
MATHS
Find the value of cot25° × cot35° × cot4...

Find the value of `cot25° × cot35° × cot45° × cot55° × cot65°`

A

`√3`

B

`2`

C

`1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cot 25^\circ \times \cot 35^\circ \times \cot 45^\circ \times \cot 55^\circ \times \cot 65^\circ \), we can use the property of cotangent that states: \[ \cot \theta \times \cot (90^\circ - \theta) = 1 \] ### Step-by-step Solution: 1. **Identify pairs using the cotangent property**: - We can pair \( \cot 25^\circ \) with \( \cot 65^\circ \) because: \[ \cot 25^\circ = \cot (90^\circ - 65^\circ) \] - We can pair \( \cot 35^\circ \) with \( \cot 55^\circ \) because: \[ \cot 35^\circ = \cot (90^\circ - 55^\circ) \] 2. **Rewrite the expression**: - The original expression can be rewritten as: \[ \cot 25^\circ \times \cot 65^\circ \times \cot 35^\circ \times \cot 55^\circ \times \cot 45^\circ \] 3. **Apply the cotangent property**: - Using the property: \[ \cot 25^\circ \times \cot 65^\circ = 1 \] \[ \cot 35^\circ \times \cot 55^\circ = 1 \] 4. **Include \( \cot 45^\circ \)**: - We know that: \[ \cot 45^\circ = 1 \] 5. **Combine the results**: - Now, substituting back into the expression: \[ (\cot 25^\circ \times \cot 65^\circ) \times (\cot 35^\circ \times \cot 55^\circ) \times \cot 45^\circ = 1 \times 1 \times 1 = 1 \] ### Final Answer: Thus, the value of \( \cot 25^\circ \times \cot 35^\circ \times \cot 45^\circ \times \cot 55^\circ \times \cot 65^\circ \) is \( \boxed{1} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of cot35^@ cot40^@ cot45^@ cot50^@ cot55^@ ? cot35^@ cot40^@ cot45^@ cot50^@ cot55^@ का मान क्या है ?

find the value of cot45^(@)+cos60^(@)

Find the value of (tan25^(@))/(cot65^(@)) .

Find the value of (tan25^(@))/(cot65^(@)) .

Find the value of cot(tan^(-1)a+cot^(-1)a)

Find the value of (cot25^0+cot55^0)/(tan25^0+tan55^0)+(cot55^0+cot100^0)/(tan55^0+tan100^0)+(cot100^0+cot25^0)/(tan100^0+tan25^0)

the value of the expression cot2cot3-cot3cot5-cot5cot2=

Find the value of: cot(tan^(-1)a+cot^(-1)a)

If theta=9^@ , then what is the value of cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta ? यदि theta=9^@ ,तो cot theta cot2 theta cot3 theta cot4 theta cot5 theta cot6 theta cot7 theta cot8 theta cot9 theta का मान क्या होगा?

The value of cot10^@ cot20^@ cot60^@ cot 70^@ cot 80^@ is