Home
Class 14
MATHS
If (x -1/x) = 5 , find (x^(6) -5x^(3) -1...

If (x -1/x) = 5 , find `(x^(6) -5x^(3) -1) //(x^(6) +7x^(3) -1)`

A

(A). ` 145 //133`

B

(B). ` 135//147`

C

(C). ` 133//145`

D

(D). ` 135//133`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ x - \frac{1}{x} = 5 \] ### Step 1: Find \( x^3 - \frac{1}{x^3} \) To find \( x^3 - \frac{1}{x^3} \), we can use the identity: \[ x^3 - \frac{1}{x^3} = \left( x - \frac{1}{x} \right)^3 + 3 \left( x - \frac{1}{x} \right) \] Substituting the value we have: \[ x^3 - \frac{1}{x^3} = 5^3 + 3 \cdot 5 \] Calculating \( 5^3 \): \[ 5^3 = 125 \] Calculating \( 3 \cdot 5 \): \[ 3 \cdot 5 = 15 \] Now adding these values together: \[ x^3 - \frac{1}{x^3} = 125 + 15 = 140 \] ### Step 2: Substitute into the original expression We need to find: \[ \frac{x^6 - 5x^3 - 1}{x^6 + 7x^3 - 1} \] ### Step 3: Express \( x^6 \) in terms of \( x^3 \) We can express \( x^6 \) as: \[ x^6 = \left( x^3 \right)^2 \] Thus, we can rewrite the expression as: \[ \frac{(x^3)^2 - 5x^3 - 1}{(x^3)^2 + 7x^3 - 1} \] Let \( y = x^3 \). The expression simplifies to: \[ \frac{y^2 - 5y - 1}{y^2 + 7y - 1} \] ### Step 4: Substitute \( y = x^3 \) We know \( x^3 - \frac{1}{x^3} = 140 \), which means: \[ y - \frac{1}{y} = 140 \] From this, we can find \( y + \frac{1}{y} \): \[ y + \frac{1}{y} = \frac{(y - \frac{1}{y})^2 + 4}{(y - \frac{1}{y})} = \frac{140^2 + 4}{140} \] Calculating \( 140^2 \): \[ 140^2 = 19600 \] So: \[ y + \frac{1}{y} = \frac{19600 + 4}{140} = \frac{19604}{140} = 140.02857 \approx 140 \] ### Step 5: Evaluate the expression Now we can evaluate the expression: \[ \frac{y^2 - 5y - 1}{y^2 + 7y - 1} \] Substituting \( y = 140 \): \[ \frac{140^2 - 5 \cdot 140 - 1}{140^2 + 7 \cdot 140 - 1} \] Calculating \( 140^2 - 5 \cdot 140 - 1 \): \[ 140^2 = 19600 \] \[ 5 \cdot 140 = 700 \] \[ 19600 - 700 - 1 = 18899 \] Calculating \( 140^2 + 7 \cdot 140 - 1 \): \[ 7 \cdot 140 = 980 \] \[ 19600 + 980 - 1 = 20579 \] Finally, the expression becomes: \[ \frac{18899}{20579} \] ### Final Answer Thus, the final answer is: \[ \frac{18899}{20579} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x-(1)/(x)=5,xne0 then what is the value of (x^(6)+3x^(3)-1)/(x^(6)-8x^(3)-1) ?

From the sum of 6x^(4) - 3x^(3) + 7x^(2) - 5x + 1 and -3x^(4) + 5x^(3) - 9x^(2) + 7x - 2 subtract 2x^(4) - 5x^(3) + 2x^(2) - 6x - 8

Evaluate Lt {x rarr oo} (3x ^ (3) -4x ^ (2) + 6x-1) / (2x ^ (3) + x ^ (2) -5x + 7)

Add: (3x^(2) - (1)/(5)x + (7)/(3)) + ((-1)/(4)x^(2) + (1)/(3)x - (1)/(6)) + (-2x^(2) - (1)/(2)x + 5)

Find each of the following products: (i) (x + 3) (x - 3) (ii) (2x + 5)(2x - 5) (ii) (8 + x)(8 - x) (iv) (7x + 11y) (7x - 11y) (v) (5x^(2) + (3)/(4) y^(2)) (5x^(2) - (3)/(4) y^(2)) (vi) ((4x)/(5) - (5y)/(3)) ((4x)/(5) + (5y)/(3)) (vii) (x + (1)/(x)) (x - (1)/(x)) (viii) ((1)/(x) + (1)/(y)) ((1)/(x) - (1)/(y)) (ix) (2a + (3)/(b)) (2a - (3)/(b))