Home
Class 14
MATHS
If 16 x^(2) + y^(2) = 48 and xy = 11 ...

If ` 16 x^(2) + y^(2) = 48 and xy = 11 ` find the value of ` 64 x^(3) + y^(3)`

A

` 4 sqrt(34)`

B

` 8 sqrt(36)`

C

` 4 sqrt(36`

D

` 8 sqrt(34)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 64x^3 + y^3 \) given the equations \( 16x^2 + y^2 = 48 \) and \( xy = 11 \). ### Step-by-Step Solution: 1. **Rewrite the first equation**: We can express \( 16x^2 + y^2 = 48 \) in a different form: \[ 16x^2 + y^2 = 48 \implies 4^2 x^2 + y^2 = 48 \] This can be rewritten as: \[ (4x)^2 + y^2 = 48 \] 2. **Use the identity for squares**: We know that: \[ (a + b)^2 = a^2 + b^2 + 2ab \] Let \( a = 4x \) and \( b = y \). Then we can express: \[ (4x + y)^2 = (4x)^2 + y^2 + 2(4x)(y) \] Substituting the known values: \[ (4x + y)^2 = 48 + 2(4xy) \] 3. **Substitute \( xy \)**: Since \( xy = 11 \), we can substitute this into the equation: \[ (4x + y)^2 = 48 + 2(4 \cdot 11) = 48 + 88 = 136 \] 4. **Take the square root**: Taking the square root of both sides gives: \[ 4x + y = \sqrt{136} = 2\sqrt{34} \] 5. **Use the formula for cubes**: We need to find \( 64x^3 + y^3 \). We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Here, let \( a = 4x \) and \( b = y \). Thus: \[ 64x^3 + y^3 = (4x)^3 + y^3 = (4x + y)((4x)^2 - (4x)(y) + y^2) \] 6. **Substitute known values**: We already found \( 4x + y = 2\sqrt{34} \). Now we need to calculate \( (4x)^2 - (4x)(y) + y^2 \): - \( (4x)^2 = 16x^2 \) - \( (4x)(y) = 4xy = 4 \cdot 11 = 44 \) - \( y^2 = y^2 \) Therefore: \[ (4x)^2 - (4x)(y) + y^2 = 16x^2 - 44 + y^2 \] 7. **Substitute \( 16x^2 + y^2 \)**: From the first equation, we know \( 16x^2 + y^2 = 48 \): \[ 16x^2 - 44 + y^2 = 48 - 44 = 4 \] 8. **Final calculation**: Now substituting back: \[ 64x^3 + y^3 = (4x + y)(4) = (2\sqrt{34})(4) = 8\sqrt{34} \] Thus, the value of \( 64x^3 + y^3 \) is \( 8\sqrt{34} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2) + y^(2) = 16 and x + y = 6 , then find the value of xy .

If 2x-3y=10 and xy=16 , find the value of 8x^(3)-27y^(3) .

If 3x-2y=11 and xy=12, find the value of 27x^(3)-8y^(3)

If 2x+3y=8 and xy=2, find the value of 4x^(2)+9y^(2)

If 2x+3y=13 and xy=6, find the value of 3x^(3)+27y^(3)

If 2x+3y=13 and xy=6, find the value of 8x^(3)+27y^(3)

If 2x+3y=8 and xy=2; then find the value of 4x^(2)+9y^(2)

If x^2 -3x + 1 =0 , and xy = 1 then find the value of x^3-y^3 +3xy

If x^(2) + y^(2) -3xy = 0 and x gt y then find the value of log_(xy)(x-y) .