Home
Class 14
MATHS
If x- y = 11 , 1 // x - 1//y = 11//24 ,...

If ` x- y = 11 , 1 // x - 1//y = 11//24 , ` then find ` x^(3) - y ^(3) `

A

429

B

485

C

529

D

539

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given equations to find the value of \( x^3 - y^3 \). ### Step 1: Write down the equations We are given: 1. \( x - y = 11 \) (Equation 1) 2. \( \frac{1}{x} - \frac{1}{y} = \frac{11}{24} \) (Equation 2) ### Step 2: Simplify Equation 2 From Equation 2, we can rewrite it using a common denominator: \[ \frac{y - x}{xy} = \frac{11}{24} \] Since \( y - x = -(x - y) \), we can substitute: \[ \frac{-(x - y)}{xy} = \frac{11}{24} \] Substituting \( x - y = 11 \): \[ \frac{-11}{xy} = \frac{11}{24} \] ### Step 3: Cross-multiply to solve for \( xy \) Cross-multiplying gives: \[ -11 \cdot 24 = 11 \cdot xy \] \[ -264 = 11xy \] Dividing both sides by 11: \[ xy = -24 \] ### Step 4: Use the identity for \( x^3 - y^3 \) We can use the identity: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) \] We already know \( x - y = 11 \) and \( xy = -24 \). ### Step 5: Find \( x^2 + xy + y^2 \) We can express \( x^2 + y^2 \) using the identity: \[ x^2 + y^2 = (x - y)^2 + 2xy \] Substituting the known values: \[ x^2 + y^2 = (11)^2 + 2(-24) = 121 - 48 = 73 \] Now, substituting back to find \( x^2 + xy + y^2 \): \[ x^2 + xy + y^2 = x^2 + y^2 + xy = 73 - 24 = 49 \] ### Step 6: Calculate \( x^3 - y^3 \) Now substituting back into the identity: \[ x^3 - y^3 = (x - y)(x^2 + xy + y^2) = 11 \cdot 49 = 539 \] ### Final Answer Thus, the value of \( x^3 - y^3 \) is \( 539 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x +3y = 30 and (x+y)/y = 11/8 , then find the value of 5y + 6x

If x : y = 3 : 4 and y : z = 6 : 11," then find " x : y : z .

If 3x-2y=11 and xy=12, find the value of 27x^(3)-8y^(3)

If x + y =7 and 3x-2y=11,then

If x : y = 6 : 11 find (8 x - 3y) : (3x + 2y)

If (5x+7y):(3x+11y)=2:3 , then find x:y.