Home
Class 14
MATHS
If cos ^(2) theta = 3 sin ^(2) theta , ...

If ` cos ^(2) theta = 3 sin ^(2) theta , ` then find the value of ` sec ^(2) theta - tan ^(2) theta + cos ^(2) theta`

A

` 7//4`

B

` 5//2`

C

` 8//9`

D

` 3//5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given**: \( \cos^2 \theta = 3 \sin^2 \theta \) 2. **Using the Pythagorean Identity**: We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). We can express \( \sin^2 \theta \) in terms of \( \cos^2 \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta \] 3. **Substituting in the given equation**: \[ \cos^2 \theta = 3(1 - \cos^2 \theta) \] Expanding this gives: \[ \cos^2 \theta = 3 - 3\cos^2 \theta \] 4. **Rearranging the equation**: \[ \cos^2 \theta + 3\cos^2 \theta = 3 \] This simplifies to: \[ 4\cos^2 \theta = 3 \] 5. **Solving for \( \cos^2 \theta \)**: \[ \cos^2 \theta = \frac{3}{4} \] 6. **Finding \( \sec^2 \theta \) and \( \tan^2 \theta \)**: - Recall that \( \sec^2 \theta = \frac{1}{\cos^2 \theta} \): \[ \sec^2 \theta = \frac{1}{\frac{3}{4}} = \frac{4}{3} \] - And \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4} \] Thus, \[ \tan^2 \theta = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3} \] 7. **Calculating \( \sec^2 \theta - \tan^2 \theta + \cos^2 \theta \)**: \[ \sec^2 \theta - \tan^2 \theta + \cos^2 \theta = \frac{4}{3} - \frac{1}{3} + \frac{3}{4} \] 8. **Finding a common denominator**: The common denominator for \( 3 \) and \( 4 \) is \( 12 \): \[ \frac{4}{3} = \frac{16}{12}, \quad \frac{1}{3} = \frac{4}{12}, \quad \frac{3}{4} = \frac{9}{12} \] 9. **Combining the fractions**: \[ \sec^2 \theta - \tan^2 \theta + \cos^2 \theta = \frac{16}{12} - \frac{4}{12} + \frac{9}{12} = \frac{16 - 4 + 9}{12} = \frac{21}{12} = \frac{7}{4} \] Thus, the final answer is: \[ \boxed{\frac{7}{4}} \]
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If sin theta = cos theta , then find the value of 2 tan theta + cos^(2) theta .

If 3cos theta=1, find the value of (6sin^(2)theta+tan^(2)theta)/(4cos theta)

Knowledge Check

  • If 3 cos^2 theta - 4 sin theta + 1 = 0 and 0^@ lt theta lt 90^@ , then find the value of sec theta + tan theta

    A
    `sqrt()3`
    B
    `2sqrt()2`
    C
    `sqrt()5`
    D
    `5sqrt()5`
  • If 2 - cos^(2) theta = 3 sin theta cos theta , sin theta ne cos theta then tan theta is

    A
    `1/2`
    B
    `0`
    C
    `2/3`
    D
    `1/3`
  • Similar Questions

    Explore conceptually related problems

    If sec theta=cos^(2)theta then find the value of sin^(4)theta+2sin^(3)theta+sin^(2)theta

    If sqrt(3) tan theta=3 sin theta and theta!=0 then find the value of sin^(2)theta-cos^(2)theta .

    tan^(2)theta+sec theta=5, then find the value of cos theta

    if sin theta=cos theta, then find the value of 2tan theta+cos^(2)theta

    If cos theta + sec theta = k , what is the value of sin^(2)theta - tan^2 theta ?

    If 3cos theta=5sin theta, then find the value of 5sin theta-2sec^(3)theta+2cos theta5sin theta+2sec^(3)theta-2cos theta