Home
Class 14
MATHS
Simplify: (625)/(15625) xx 5^2 xx sqr...

Simplify:
`(625)/(15625) xx 5^2 xx sqrt(5^(-10)) div root(3)(5/(5^(16)))`

A

a) 1

B

b) 0

C

c) 0.5

D

d) 0.25

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `(625)/(15625) * 5^2 * sqrt(5^(-10)) / root(3)(5/(5^(16)))`, we will follow these steps: ### Step 1: Simplify the fraction We start with the fraction \( \frac{625}{15625} \). - \( 625 = 5^4 \) (since \( 5^4 = 625 \)) - \( 15625 = 5^6 \) (since \( 5^6 = 15625 \)) Thus, we can rewrite the fraction as: \[ \frac{625}{15625} = \frac{5^4}{5^6} = 5^{4-6} = 5^{-2} \] **Hint for Step 1:** Remember that \( \frac{a^m}{a^n} = a^{m-n} \). ### Step 2: Simplify \( 5^2 \) Next, we have \( 5^2 \) which remains as it is. **Hint for Step 2:** Just keep the powers of 5 as they are unless you need to combine them. ### Step 3: Simplify \( \sqrt{5^{-10}} \) Now we simplify \( \sqrt{5^{-10}} \): \[ \sqrt{5^{-10}} = 5^{-10/2} = 5^{-5} \] **Hint for Step 3:** Remember that \( \sqrt{a^m} = a^{m/2} \). ### Step 4: Simplify the cubic root Next, we simplify \( \text{root}(3)\left(\frac{5}{5^{16}}\right) \): \[ \frac{5}{5^{16}} = 5^{1-16} = 5^{-15} \] Now applying the cubic root: \[ \text{root}(3)(5^{-15}) = 5^{-15/3} = 5^{-5} \] **Hint for Step 4:** For cubic roots, use \( \text{root}(3)(a^m) = a^{m/3} \). ### Step 5: Combine all parts Now we combine all the parts we have simplified: \[ 5^{-2} \cdot 5^2 \cdot 5^{-5} \div 5^{-5} \] ### Step 6: Handle the division Using the property of exponents: \[ 5^{-2} \cdot 5^2 \cdot 5^{-5} \cdot 5^{5} = 5^{-2 + 2 - 5 + 5} = 5^{0} = 1 \] **Hint for Step 6:** When dividing or multiplying powers of the same base, add or subtract their exponents accordingly. ### Final Answer The simplified expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (-5)^(4) xx (-5)^(3)

Simplify: 2/3 xx 3/5+5/2 xx 3/5 xx 7/6

Simplify: (-5)^(2)xx(-3)^3

Simplify: 2^3xx5 (ii) 0xx10^2

Simplify : (-3)^(2)xx(-5)^2

Simplify: (-5)-(-48)-:(-16)+(-2)xx6