Home
Class 14
MATHS
If 3 cos^2 theta - 4 sin theta + 1 = 0 ...

If `3 cos^2 theta - 4 sin theta + 1 = 0 ` and `0^@ lt theta lt 90^@` , then find the value of `sec theta + tan theta`

A

`sqrt()3`

B

`2sqrt()2`

C

`sqrt()5`

D

`5sqrt()5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(3 \cos^2 \theta - 4 \sin \theta + 1 = 0\) and find the value of \( \sec \theta + \tan \theta\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 3 \cos^2 \theta - 4 \sin \theta + 1 = 0 \] Using the identity \( \cos^2 \theta = 1 - \sin^2 \theta\), we can rewrite the equation in terms of \( \sin \theta\): \[ 3(1 - \sin^2 \theta) - 4 \sin \theta + 1 = 0 \] This simplifies to: \[ 3 - 3 \sin^2 \theta - 4 \sin \theta + 1 = 0 \] or: \[ -3 \sin^2 \theta - 4 \sin \theta + 4 = 0 \] Multiplying through by -1 gives: \[ 3 \sin^2 \theta + 4 \sin \theta - 4 = 0 \] ### Step 2: Solve the quadratic equation Now we can use the quadratic formula \( \sin \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 3\), \( b = 4\), and \( c = -4\). Calculating the discriminant: \[ b^2 - 4ac = 4^2 - 4 \cdot 3 \cdot (-4) = 16 + 48 = 64 \] Now substituting into the formula: \[ \sin \theta = \frac{-4 \pm \sqrt{64}}{2 \cdot 3} = \frac{-4 \pm 8}{6} \] Calculating the two possible values: 1. \( \sin \theta = \frac{4}{6} = \frac{2}{3} \) 2. \( \sin \theta = \frac{-12}{6} = -2 \) (not valid since \( \sin \theta \) must be between -1 and 1) Thus, we have: \[ \sin \theta = \frac{2}{3} \] ### Step 3: Find \cos \theta Using the Pythagorean identity: \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9} \] So: \[ \cos \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] ### Step 4: Calculate \( \sec \theta + \tan \theta \) Now we can find \( \sec \theta \) and \( \tan \theta \): \[ \sec \theta = \frac{1}{\cos \theta} = \frac{3}{\sqrt{5}} \] \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2}{3}}{\frac{\sqrt{5}}{3}} = \frac{2}{\sqrt{5}} \] Now adding them together: \[ \sec \theta + \tan \theta = \frac{3}{\sqrt{5}} + \frac{2}{\sqrt{5}} = \frac{3 + 2}{\sqrt{5}} = \frac{5}{\sqrt{5}} = \sqrt{5} \] ### Final Answer Thus, the value of \( \sec \theta + \tan \theta \) is: \[ \sqrt{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if 7 cos^(2) theta + 3 sin^2 theta = 4 and 0 lt theta lt (pi)/(2) , then find the value of cot theta

If sin theta=7/25 and 90^@ lt theta lt 180^@ , find the value of sec theta+tan theta .

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

lf 2 cos 3theta = sqrt3 and 0^@ lt theta lt 90^@ then the value of theta is

if (cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@ then what is the value of (sec theta + cosec theta + cot theta)?

If 0lt theta lt 90^(@) , the (sin theta+cos theta) is :