Home
Class 12
MATHS
2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin(...

`2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

sin((13pi)/3)sin((8pi)/3)+cos((2pi)/3)sin((5pi)/6)=1/2

sin(pi)/(4)*sin(3 pi)/(4)*sin(5 pi)/(4)*sin(7 pi)/(4)=

(sin((2 pi)/(7))+sin((4 pi)/(7)) -sin((6 pi)/(7)))/(sin((pi)/(7))sin((3 pi)/(7))sin((5 pi)/(7))) is equal to

Prove (i) "sin"^(2)(pi)/(8)+"sin"^(2)(3pi)/(8)+"sin"^(2)(5pi)/(8)+"sin"^(2)(7pi)/(8)=2 (ii) [1+cotalpha-sec((pi)/(2)+alpha)] [1+cotalpha+sec((pi)/(2)+alpha)]=2cotalpha

Prove that: sin^(4)((pi)/(8))+sin^(4)((3 pi)/(8))+sin^(4)((5 pi)/(8))+sin^(4)((7 pi)/(8))=(3)/(2)

sin ((pi) / (5)) sin ((2 pi) / (5)) sin ((3 pi) / (5)) sin ((4 pi) / (5)) =

sin^(2)(pi)/(4)+sin^(2)(3 pi)/(4)+sin^(2)(5 pi)/(4)+sin^(2)(7 pi)/(4)=2