Home
Class 12
MATHS
int(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx)...

`int_(-pi/2)^(pi/2)(1+sin^2x)/(1+pi^(sinx))dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \, dx, \] we will follow these steps: ### Step 1: Define the integral Let \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \, dx. \] ### Step 2: Substitute \( x \) with \( -x \) We will replace \( x \) with \( -x \) in the integral: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2(-x)}{1 + \pi^{\sin(-x)}} \, dx. \] Using the properties of sine, we know that \( \sin(-x) = -\sin x \). Thus, we have: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \pi^{-\sin x}} \, dx. \] ### Step 3: Simplify the denominator The term \( \pi^{-\sin x} \) can be rewritten as \( \frac{1}{\pi^{\sin x}} \). Therefore, we can express the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \frac{1}{\pi^{\sin x}}} \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1 + \sin^2 x) \cdot \pi^{\sin x}}{\pi^{\sin x} + 1} \, dx. \] ### Step 4: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} \, dx \) 2. \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{(1 + \sin^2 x) \cdot \pi^{\sin x}}{\pi^{\sin x} + 1} \, dx \) ### Step 5: Add the two expressions Adding these two equations gives: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{1 + \sin^2 x}{1 + \pi^{\sin x}} + \frac{(1 + \sin^2 x) \cdot \pi^{\sin x}}{\pi^{\sin x} + 1} \right) dx. \] ### Step 6: Simplify the integrand The integrand simplifies to: \[ \frac{(1 + \sin^2 x)(1 + \pi^{\sin x})}{1 + \pi^{\sin x}} = 1 + \sin^2 x. \] Thus, we have: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \sin^2 x) \, dx. \] ### Step 7: Evaluate the integral Now we can split the integral: \[ 2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx. \] The first integral evaluates to: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx = \pi. \] For the second integral, we use the identity \( \sin^2 x = \frac{1 - \cos(2x)}{2} \): \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \left( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(2x) \, dx \right). \] The integral of \( \cos(2x) \) over a symmetric interval around zero is zero, thus: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx = \frac{1}{2} \cdot \pi = \frac{\pi}{2}. \] ### Step 8: Combine results Now substituting back, we have: \[ 2I = \pi + \frac{\pi}{2} = \frac{3\pi}{2}. \] Thus, dividing by 2 gives: \[ I = \frac{3\pi}{4}. \] ### Final Answer The value of the integral is \[ \boxed{\frac{3\pi}{4}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

int_(-pi/2)^(pi/2) sin^(2) x dx

int_(pi/3)^(pi/2) sinx dx

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of the integral int_(-pi//2)^(pi//2)(sin^(2)x)/(1+e^(x))dx is

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x)) dx is

Evaluate int_(-pi/2)^(pi/2)(sin2x)/(1+cos^3x)dx

int_(-(pi)/(2))^((pi)/(2))(sin^(2)x)/(1+2^(x))dx=