Home
Class 12
MATHS
[(1,0,0),(0,1,1),(1,0,0)]=A then A^(2025...

`[(1,0,0),(0,1,1),(1,0,0)]=A` then `A^(2025)-A^(2020)=`

A

`A^5`

B

`A^6`

C

`A^6-A`

D

`A^5-A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( A^{2025} - A^{2020} \) where \( A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \), we will first find a pattern in the powers of the matrix \( A \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row: - \( (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - Second row: - \( (0 \cdot 1 + 1 \cdot 0 + 1 \cdot 1) = 1 \) - \( (0 \cdot 0 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - \( (0 \cdot 0 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - Third row: - \( (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) Thus, we have: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] Calculating each element: - First row: - \( (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - Second row: - \( (1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1) = 2 \) - \( (1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - \( (1 \cdot 0 + 1 \cdot 1 + 1 \cdot 0) = 1 \) - Third row: - \( (1 \cdot 1 + 0 \cdot 0 + 0 \cdot 1) = 1 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) - \( (1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0) = 0 \) Thus, we have: \[ A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 3: Identify the Pattern From the calculations, we can see a pattern emerging: - \( A^1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \) - \( A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \) - \( A^3 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \) The general form for \( A^n \) appears to be: \[ A^n = \begin{pmatrix} 1 & 0 & 0 \\ n-1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 4: Calculate \( A^{2025} \) and \( A^{2020} \) Using the identified pattern: \[ A^{2025} = \begin{pmatrix} 1 & 0 & 0 \\ 2024 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] \[ A^{2020} = \begin{pmatrix} 1 & 0 & 0 \\ 2019 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] ### Step 5: Calculate \( A^{2025} - A^{2020} \) Now we subtract \( A^{2020} \) from \( A^{2025} \): \[ A^{2025} - A^{2020} = \begin{pmatrix} 1 & 0 & 0 \\ 2024 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 2019 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \] Calculating the subtraction element-wise: - First row: \( 1 - 1 = 0 \), \( 0 - 0 = 0 \), \( 0 - 0 = 0 \) - Second row: \( 2024 - 2019 = 5 \), \( 1 - 1 = 0 \), \( 1 - 1 = 0 \) - Third row: \( 1 - 1 = 0 \), \( 0 - 0 = 0 \), \( 0 - 0 = 0 \) Thus, we have: \[ A^{2025} - A^{2020} = \begin{pmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \] ### Final Answer The final result is: \[ \begin{pmatrix} 0 & 0 & 0 \\ 5 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = ({:(1,0,0),(0,1,1),(1,0,0):}) . Then A^(2025) - A^(2020) is equal to :

If A[(1, 0, 0),(x, 1, 0),(x, x, 1)] and I=[(1, 0, 0),(0,1,0),(0,0,1)] , then A^(3)-3A^(2)+3A is equal to

If A={:[(0,0,0),(0,0,0),(1,0,0)]:} , then

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

The inverse of the matrix [(0,0,1),(0,1,0),(1,0,0)] is (A) [(0,0,1),(0,1,0),(1,0,0)] (B) [(0,0,-1),(0,-1,0),(-1,0,0)] (C) [(1,0,0),(0,1,0),(0,0,1)] (D) [(1/2,0,0),(0,1/2,0),(0,0,1/2)]

If A=[[1,0,1],[0,1,1],[1,0,0]] then A^-1 is