Home
Class 12
MATHS
lim(x rarr 2)sum(n=1)^9x/(n(n+1)x^2+2(2n...

`lim_(x rarr 2)sum_(n=1)^9x/(n(n+1)x^2+2(2n+1)x+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow these steps: **Step 1: Substitute the limit value into the expression.** We need to evaluate the limit: \[ \lim_{x \to 2} \sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4} \] Substituting \(x = 2\): \[ \sum_{n=1}^{9} \frac{2}{n(n+1)(2^2) + 2(2(2n+1)) + 4} \] Calculating \(2^2 = 4\): \[ = \sum_{n=1}^{9} \frac{2}{n(n+1)(4) + 4(2n + 1) + 4} \] This simplifies to: \[ = \sum_{n=1}^{9} \frac{2}{4n(n+1) + 8n + 4 + 4} \] \[ = \sum_{n=1}^{9} \frac{2}{4n(n+1) + 8n + 8} \] **Step 2: Simplify the denominator.** The denominator can be simplified: \[ = \sum_{n=1}^{9} \frac{2}{4(n^2 + 3n + 2)} \] Factoring the quadratic: \[ = \sum_{n=1}^{9} \frac{2}{4(n+1)(n+2)} \] This simplifies to: \[ = \frac{1}{2} \sum_{n=1}^{9} \frac{1}{(n+1)(n+2)} \] **Step 3: Use partial fraction decomposition.** We can express \(\frac{1}{(n+1)(n+2)}\) using partial fractions: \[ \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2} \] Thus, the sum becomes: \[ = \frac{1}{2} \sum_{n=1}^{9} \left( \frac{1}{n+1} - \frac{1}{n+2} \right) \] **Step 4: Evaluate the telescoping series.** This series telescopes: \[ = \frac{1}{2} \left( \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + \cdots + \left( \frac{1}{10} - \frac{1}{11} \right) \right) \] Most terms cancel out, leaving: \[ = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{11} \right) \] **Step 5: Calculate the final result.** Finding a common denominator: \[ = \frac{1}{2} \left( \frac{11 - 2}{22} \right) = \frac{1}{2} \cdot \frac{9}{22} = \frac{9}{44} \] Thus, the final result is: \[ \lim_{x \to 2} \sum_{n=1}^{9} \frac{x}{n(n+1)x^2 + 2(2n+1)x + 4} = \frac{9}{44} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim/(x to2)(sum^(9)/(n =1) x/(n(n +1) x^2 +2(2n +1)x + 4))

lim_(x rarr oo)(n+1)/(2n^(2)+n-1)

lim_(x rarr2)(sum_(r=1)^(n)x^(r)-sum_(r=1)^(n)2^(r))/(x-2)

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

lim_(x rarr oo)sum_(r=1)^(n)((x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

lim_(xrarr2)(sum_(r=1)^(n)x^r-sum_(r=1)^(n)2r)/(x-2) is equal to

lim_ (x rarr oo) sum_ (r = 0) ^ (n) ((1) / ((r + 2) n ^ (r)) =