Home
Class 12
MATHS
sum(r=1)^9 tan^-1(1/(2r^2)) =...

`sum_(r=1)^9 tan^-1(1/(2r^2)) =`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=1)^(50)tan^(-1)1/(2r^2)=p , then the value of tan p is:

lim_(nrarroo)tan(sum_(r=1)^ntan^(-1)(1/(r^2+r+1)))

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

sum_(r=1)^oo tan^-1((6^r)/(2^(2r+1)+3^(2r+1)))

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to:

sum_(r=1)^(n)tan^(-1)((2^(r-1))/(1+2^(2r-1))) is equal to

lim_(x to oo ) tan { sum_(r=1)^(n) tan^(-1) ((1)/( 1 +r +r^2))} is equal to ________.

sum_(i=1)^(oo)tan^(-1)((1)/(2r^(2)))=

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to