Home
Class 12
MATHS
I= int6^16 (lnx^2)/(lnx^2+ln(x-22)^2)dx ...

`I= int_6^16 (lnx^2)/(lnx^2+ln(x-22)^2)dx ?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{6}^{16} \frac{\ln x^2}{\ln x^2 + \ln(x-22)^2} \, dx \), we will utilize the properties of definite integrals, specifically a property known as King's rule. ### Step-by-step Solution: 1. **Set up the integral**: \[ I = \int_{6}^{16} \frac{\ln x^2}{\ln x^2 + \ln(x-22)^2} \, dx \] 2. **Apply King's Rule**: According to King's rule, we can express the integral as: \[ I = \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a+b-x) \, dx \] Here, \( a = 6 \) and \( b = 16 \). Thus, \( a + b = 22 \). We replace \( x \) with \( 22 - x \): \[ I = \int_{6}^{16} \frac{\ln(22-x)^2}{\ln(22-x)^2 + \ln x^2} \, dx \] 3. **Rewrite the integral**: Now we have two expressions for \( I \): \[ I = \int_{6}^{16} \frac{\ln x^2}{\ln x^2 + \ln(x-22)^2} \, dx \quad \text{(Equation 1)} \] \[ I = \int_{6}^{16} \frac{\ln(22-x)^2}{\ln(22-x)^2 + \ln x^2} \, dx \quad \text{(Equation 2)} \] 4. **Add the two equations**: Adding Equation 1 and Equation 2: \[ 2I = \int_{6}^{16} \left( \frac{\ln x^2}{\ln x^2 + \ln(x-22)^2} + \frac{\ln(22-x)^2}{\ln(22-x)^2 + \ln x^2} \right) dx \] 5. **Simplify the integrand**: The sum of the two fractions simplifies to: \[ \frac{\ln x^2 + \ln(22-x)^2}{\ln x^2 + \ln(22-x)^2} = 1 \] Thus, we have: \[ 2I = \int_{6}^{16} 1 \, dx \] 6. **Evaluate the integral**: The integral of 1 from 6 to 16 is: \[ \int_{6}^{16} 1 \, dx = 16 - 6 = 10 \] Therefore, we have: \[ 2I = 10 \] 7. **Solve for \( I \)**: Dividing both sides by 2 gives: \[ I = \frac{10}{2} = 5 \] ### Final Answer: \[ I = 5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int ln(x^(2)+x+2)dx

int(ln(6x^(2)))/(x)dx

I=int(log(x^2))/(x)dx

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

f(x)=x^(2)+lnx

int log(2+x^(2))dx

The value of int_(1)^(e)(1+x^(2)lnx)/(x+x^(2)lnx)dx

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

int x^(2)(log x)^(2)dx

int x^(x^2+1) (2lnx+1) dx=