Home
Class 12
MATHS
I= int dx/(x^2+x+1)^2=Atan^-1((2x+1)/(sq...

`I= int dx/(x^2+x+1)^2=Atan^-1((2x+1)/(sqrt3))+B(2x+1)/(x^2+x+1)` then Find the value of A and B

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{(x^2 + x + 1)^2} \) and express it in the form \( I = A \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right) + B \frac{2x + 1}{x^2 + x + 1} \), we need to find the values of \( A \) and \( B \). ### Step-by-step Solution: 1. **Differentiate Both Sides**: Start by differentiating both sides of the equation with respect to \( x \): \[ \frac{dI}{dx} = \frac{1}{(x^2 + x + 1)^2} \] For the right-hand side: \[ \frac{d}{dx}\left(A \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right) + B \frac{2x + 1}{x^2 + x + 1}\right) \] 2. **Differentiate the First Term**: Using the chain rule for the first term: \[ \frac{d}{dx}\left(A \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right)\right) = A \cdot \frac{1}{1 + \left(\frac{2x + 1}{\sqrt{3}}\right)^2} \cdot \frac{2}{\sqrt{3}} = \frac{2A}{\sqrt{3} \left(1 + \frac{(2x + 1)^2}{3}\right)} \] Simplifying the denominator: \[ 1 + \frac{(2x + 1)^2}{3} = \frac{3 + (2x + 1)^2}{3} = \frac{3 + 4x^2 + 4x + 1}{3} = \frac{4x^2 + 4x + 4}{3} = \frac{4(x^2 + x + 1)}{3} \] Thus, \[ \frac{d}{dx}\left(A \tan^{-1}\left(\frac{2x + 1}{\sqrt{3}}\right)\right) = \frac{2A \cdot 3}{\sqrt{3} \cdot 4(x^2 + x + 1)} = \frac{3A}{2\sqrt{3}(x^2 + x + 1)} \] 3. **Differentiate the Second Term**: For the second term, apply the quotient rule: \[ \frac{d}{dx}\left(B \frac{2x + 1}{x^2 + x + 1}\right) = B \cdot \frac{(x^2 + x + 1)(2) - (2x + 1)(2x + 1)}{(x^2 + x + 1)^2} \] Simplifying the numerator: \[ 2(x^2 + x + 1) - (2x + 1)^2 = 2x^2 + 2x + 2 - (4x^2 + 4x + 1) = -2x^2 - 2x + 1 \] Thus, \[ \frac{d}{dx}\left(B \frac{2x + 1}{x^2 + x + 1}\right) = \frac{B(-2x^2 - 2x + 1)}{(x^2 + x + 1)^2} \] 4. **Combine Derivatives**: Now equate the derivatives: \[ \frac{1}{(x^2 + x + 1)^2} = \frac{3A}{2\sqrt{3}(x^2 + x + 1)} + \frac{B(-2x^2 - 2x + 1)}{(x^2 + x + 1)^2} \] 5. **Clear the Denominator**: Multiply through by \( (x^2 + x + 1)^2 \): \[ 1 = \frac{3A}{2\sqrt{3}}(x^2 + x + 1) + B(-2x^2 - 2x + 1) \] 6. **Set Up Equations**: Rearranging gives: \[ 1 = \left(-2B + \frac{3A}{2\sqrt{3}}\right)x^2 + \left(-2B + \frac{3A}{2\sqrt{3}}\right)x + (B + \frac{3A}{2\sqrt{3}}) \] For this to hold for all \( x \), coefficients must match: - Coefficient of \( x^2 \): \( -2B + \frac{3A}{2\sqrt{3}} = 0 \) - Coefficient of \( x \): \( -2B + \frac{3A}{2\sqrt{3}} = 0 \) - Constant term: \( B + \frac{3A}{2\sqrt{3}} = 1 \) 7. **Solve the System**: From \( -2B + \frac{3A}{2\sqrt{3}} = 0 \): \[ B = \frac{3A}{4\sqrt{3}} \] Substitute into the constant term equation: \[ \frac{3A}{4\sqrt{3}} + \frac{3A}{2\sqrt{3}} = 1 \] Combine terms: \[ \frac{3A}{4\sqrt{3}} + \frac{6A}{4\sqrt{3}} = 1 \implies \frac{9A}{4\sqrt{3}} = 1 \implies A = \frac{4\sqrt{3}}{9} \] Substitute \( A \) back to find \( B \): \[ B = \frac{3 \cdot \frac{4\sqrt{3}}{9}}{4\sqrt{3}} = \frac{4}{9} \] ### Final Values: Thus, the values of \( A \) and \( B \) are: \[ A = \frac{4\sqrt{3}}{9}, \quad B = \frac{4}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(dx)/((x^(2)+x+1)^(2))=atan^(-1)((2x+1)/(sqrt(3)))+b((2x+1)/(x^(2)+x+1))+C , x gt 0 where C is the constant of integration, then the value of 9(sqrt(3)a+b) is equal to __________.

int((2x-1))/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(2x-1)/(sqrt(x^(2)-x+1))dx

If int (dx)/((x^2+4)(x^2+9))=Atan^(-1)((x)/(2))+Btan^(-1)((x)/(3))+c , then A-B =

" If "int(x)/(sqrt(x+2))dx=a(x+2)^((3)/(2))+b(x+2)^((1)/(2))+cquad " ,then the values of a and b are "

int(2x+1)/(sqrt((x^(2)+x+1)))dx

int (2x+1)(sqrt(x^(2)+x+1))dx

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then