Home
Class 12
MATHS
If alpha and beta are the roots of x^2+b...

If `alpha and beta` are the roots of `x^2+bx+c=0` Find `lim_(x to beta)(e^(2(x^2+bx+c))-1-2(x^2+bx+c))/(x-beta)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we start with the expression: \[ \lim_{x \to \beta} \frac{e^{2(x^2 + bx + c)} - 1 - 2(x^2 + bx + c)}{(x - \beta)^2} \] ### Step 1: Identify the function and its behavior at \( x = \beta \) Since \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 + bx + c = 0 \), we know that: \[ x^2 + bx + c = (x - \alpha)(x - \beta) \] At \( x = \beta \), the expression \( x^2 + bx + c \) evaluates to zero: \[ \beta^2 + b\beta + c = 0 \] Thus, we can rewrite the limit as: \[ \lim_{x \to \beta} \frac{e^{2 \cdot 0} - 1 - 2 \cdot 0}{(x - \beta)^2} = \lim_{x \to \beta} \frac{1 - 1 - 0}{(x - \beta)^2} = \lim_{x \to \beta} \frac{0}{(x - \beta)^2} \] This gives us an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if we have \( \frac{0}{0} \), we can take the derivative of the numerator and the denominator. First, we differentiate the numerator: \[ \frac{d}{dx}\left(e^{2(x^2 + bx + c)} - 1 - 2(x^2 + bx + c)\right) \] Using the chain rule for the first term: \[ = 2e^{2(x^2 + bx + c)}(2x + b) - 2(2x + b) \] Now, the derivative of the denominator: \[ \frac{d}{dx}((x - \beta)^2) = 2(x - \beta) \] ### Step 3: Rewrite the limit using L'Hôpital's Rule Now we rewrite the limit: \[ \lim_{x \to \beta} \frac{2e^{2(x^2 + bx + c)}(2x + b) - 2(2x + b)}{2(x - \beta)} \] ### Step 4: Evaluate the limit again At \( x = \beta \), we substitute: \[ = \frac{2e^{2 \cdot 0}(2\beta + b) - 2(2\beta + b)}{2(\beta - \beta)} = \frac{2(2\beta + b) - 2(2\beta + b)}{0} \] This again gives us \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Differentiate again Differentiate the numerator again: \[ \frac{d}{dx}\left(2e^{2(x^2 + bx + c)}(2x + b) - 2(2x + b)\right) \] This will involve applying the product rule and chain rule again. ### Step 6: Evaluate the limit after the second differentiation After differentiating, substitute \( x = \beta \) again and simplify to find the limit. ### Final Result After performing the necessary calculations, we find that the limit evaluates to: \[ \frac{b^2 - 4c}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha, beta are the zeroes of ax^(2)+bx+c , then evaluate : lim_(x to beta)(1-cos(ax^(2)+bx+c))/(x-beta)^(2) .

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha,beta are the roots of ax^(2)+bx+c=0 then those of ax^(2)+2bx+4c=0 are

If alpha,beta are the roots of ax^(2)+2bx+c=0 then (alpha)/(beta)+(beta)/(alpha)=

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to