Home
Class 12
MATHS
(sin^-1x)^2-(cos^-1x)^2=a for o ltx lt1 ...

`(sin^-1x)^2-(cos^-1x)^2=a` for `o ltx lt1` find `2x^2-1`

A

`sin((4a)/pi)`

B

`sin((2a)/pi)`

C

`cos((4a)/pi)`

D

`cos((2a)/pi)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin^(-1)x)^(2)-(cos^(-1)x)^(2)=a , 0 lt x lt 1 , a ne 0 , then the value of 2x^(2)-1 is

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then

If 0

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Find the area bounded by the curves y=(sin^(-1)(sin x)+cos^(-1)(cos x)) and y=(sin^(-1)(sin x)+cos^(-1)(cos x))^(2) for 0<=x<=2 pi

If quad cos^(-1)x<1 and 1+sin(cos^(-1)x)+sin^(2)(cos^(-1)x)+sin^(3)(cos^(-1)x)+...oo=2 then the value of 12x^(2) is

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

If y=tan^(-1) [(sqrt(1+sinx)-sqrt(1-sin x))/(sqrt(1+sin x)+sqrt(1-sin x)]] where 0 lt x lt pi/2 find (dy)/(dx)

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1