Home
Class 12
MATHS
If y=log(10)x+log(10)x^(1/3)+log(10)x^(1...

If `y=log_(10)x+log_(10)x^(1/3)+log_(10)x^(1/9)+ . . . and (2+4+6+ . . . +2y)/(3+6+9+ . . . +3y)=4/log_(10) x` then find the value of x and y

A

`x=10^5 , y=8`

B

`x=10^6 , y=9`

C

`x=10^6 , y=8`

D

`x=10^5 , y=9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow these steps: ### Step 1: Express \( y \) in terms of \( \log_{10} x \) Given: \[ y = \log_{10} x + \log_{10} x^{1/3} + \log_{10} x^{1/9} + \ldots \] Using the property of logarithms, we can rewrite the terms: \[ y = \log_{10} x + \frac{1}{3} \log_{10} x + \frac{1}{9} \log_{10} x + \ldots \] Factoring out \( \log_{10} x \): \[ y = \log_{10} x \left(1 + \frac{1}{3} + \frac{1}{9} + \ldots \right) \] ### Step 2: Identify the series as a geometric series The series \( 1 + \frac{1}{3} + \frac{1}{9} + \ldots \) is a geometric series with: - First term \( a = 1 \) - Common ratio \( r = \frac{1}{3} \) The sum of an infinite geometric series is given by: \[ S = \frac{a}{1 - r} = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2} \] Thus, we have: \[ y = \log_{10} x \cdot \frac{3}{2} \] ### Step 3: Simplify the equation Now we can express \( y \) as: \[ y = \frac{3}{2} \log_{10} x \] ### Step 4: Analyze the second part of the equation The second part of the problem is: \[ \frac{2 + 4 + 6 + \ldots + 2y}{3 + 6 + 9 + \ldots + 3y} = \frac{4}{\log_{10} x} \] Calculating the sums in the numerator and denominator: - The numerator \( 2 + 4 + 6 + \ldots + 2y \) can be expressed as: \[ 2(1 + 2 + 3 + \ldots + y) = 2 \cdot \frac{y(y + 1)}{2} = y(y + 1) \] - The denominator \( 3 + 6 + 9 + \ldots + 3y \) can be expressed as: \[ 3(1 + 2 + 3 + \ldots + y) = 3 \cdot \frac{y(y + 1)}{2} = \frac{3y(y + 1)}{2} \] ### Step 5: Substitute back into the equation Now substituting these into the equation: \[ \frac{y(y + 1)}{\frac{3y(y + 1)}{2}} = \frac{4}{\log_{10} x} \] This simplifies to: \[ \frac{2}{3} = \frac{4}{\log_{10} x} \] ### Step 6: Solve for \( \log_{10} x \) Cross-multiplying gives: \[ 2 \log_{10} x = 12 \implies \log_{10} x = 6 \] ### Step 7: Solve for \( x \) Using the property of logarithms: \[ x = 10^6 \] ### Step 8: Substitute \( x \) back to find \( y \) Now substituting \( x = 10^6 \) back into the equation for \( y \): \[ y = \frac{3}{2} \log_{10} (10^6) = \frac{3}{2} \cdot 6 = 9 \] ### Final Values Thus, the values are: \[ x = 10^6, \quad y = 9 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

y=x^((1)/(log_(10)x))

If for x,y in R , x gt 0 , y=log_(10)x+log_(10)x^(1//3)+log_(10)x^(1//9)+ ...........upto oo terms and (2+4+6+........+2y)/(3+6+9+.......+3y)=(4)/(log_(10)x) , then the ordered pair (x,y) is equal to :

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

If log_(y)x=8" and "log_(10y)16x=4 , then find the value of y.

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If log_(10)x+log_(10)y=2, x-y=15 then :

If y=log_(10)x+log_(x)10+log_(x)x+log_(10)10,"find "(dy)/(dx) .

If log_(10)x, log_(10)y, log_(10)z are in AP, then x,y,z are in:

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x