Home
Class 12
MATHS
Let A={x:abs(x-2) gt1} , B={x:sqrt(x^2-3...

Let `A={x:abs(x-2) gt1} , B={x:sqrt(x^2-3)gt1} and C={x:abs(x-4) ge 2}` . If the number of integeral value in `(A cap B cap C)' cap Z` ( where Z is set of integers) is k, then the value of k is

A

7

B

8

C

9

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the sets \( A \), \( B \), and \( C \) based on the given conditions, and then find the number of integral values in the intersection of these sets and their complement. ### Step 1: Define Set \( A \) Set \( A \) is defined as: \[ A = \{ x : |x - 2| > 1 \} \] This can be split into two cases: 1. **Case 1**: \( x - 2 > 1 \) \[ x > 3 \quad \Rightarrow \quad x \in (3, \infty) \] 2. **Case 2**: \( -(x - 2) > 1 \) \[ -x + 2 > 1 \quad \Rightarrow \quad x < 1 \quad \Rightarrow \quad x \in (-\infty, 1) \] Combining both cases, we have: \[ A = (-\infty, 1) \cup (3, \infty) \] ### Step 2: Define Set \( B \) Set \( B \) is defined as: \[ B = \{ x : \sqrt{x^2 - 3} > 1 \} \] Squaring both sides, we get: \[ x^2 - 3 > 1 \quad \Rightarrow \quad x^2 > 4 \quad \Rightarrow \quad x > 2 \text{ or } x < -2 \] Thus, we can write: \[ B = (-\infty, -2) \cup (2, \infty) \] ### Step 3: Define Set \( C \) Set \( C \) is defined as: \[ C = \{ x : |x - 4| \geq 2 \} \] This can also be split into two cases: 1. **Case 1**: \( x - 4 \geq 2 \) \[ x \geq 6 \quad \Rightarrow \quad x \in [6, \infty) \] 2. **Case 2**: \( -(x - 4) \geq 2 \) \[ -x + 4 \geq 2 \quad \Rightarrow \quad x \leq 2 \quad \Rightarrow \quad x \in (-\infty, 2] \] Combining both cases, we have: \[ C = (-\infty, 2] \cup [6, \infty) \] ### Step 4: Find \( A \cap B \cap C \) Now we need to find the intersection \( A \cap B \cap C \). 1. **Intersection of \( A \) and \( B \)**: \[ A \cap B = \left((- \infty, 1) \cup (3, \infty)\right) \cap \left((- \infty, -2) \cup (2, \infty)\right) \] This gives: \[ A \cap B = (-\infty, -2) \cup (3, \infty) \] 2. **Intersection with \( C \)**: \[ C = (-\infty, 2] \cup [6, \infty) \] Now we find: \[ (A \cap B) \cap C = \left((- \infty, -2) \cup (3, \infty)\right) \cap \left((- \infty, 2] \cup [6, \infty)\right) \] This results in: \[ (A \cap B) \cap C = (-\infty, -2) \cup [6, \infty) \] ### Step 5: Find the Complement Now we need the complement of \( A \cap B \cap C \): \[ (A \cap B \cap C)' = \mathbb{R} \setminus \left((- \infty, -2) \cup [6, \infty)\right) \] This gives: \[ (A \cap B \cap C)' = (-2, 6) \] ### Step 6: Find the Intersection with \( Z \) Now we find the intersection with the set of integers \( Z \): \[ (A \cap B \cap C)' \cap Z = (-2, 6) \cap Z \] The integers in this interval are: \[ -1, 0, 1, 2, 3, 4, 5 \] Counting these gives us 7 integers. ### Final Answer Thus, the value of \( k \) is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If A={x in R : |x-2| gt 1} , B={x in R : sqrt(x^(2)-3) gt 1 } , C={x in R : |x-4| ge 2} and Z is the set of all integers, then the number of subsets of the set (AnnBnnC)^(c )nnZ is ___________.

If the number of integral of solutions of x+y+z+w lt 25 are .^(23)C_(lambda) , such that x gt -2, y gt 1, z ge 0, w gt 3 , then the value of lambda is

Let ZZ be the set of all integers, A={(x,y) in ZZ xx ZZ : (x-2)^(2)+y^(2)le 4} , B={(x,y) in ZZ xx ZZ : x^(2)+y^(2) le 4} and C={(x,y) in ZZ xx ZZ : (x-2)^(2) +(y-2)^(2) le 4} If the total number of relations from A cap B to A cap C is 2^(p) , then the value of pis :

If A and B are subsets of a set X, then what is the value of {A cap (X-B)} cup B ?

if a N= {a x:x iin N} and b N cap c N , where b,c in N are relatively prime , then

Let f(x)=ax^(2)+bx+c, where a,b,c are rational,and f:z rarr z ,Where z is the set of integers.Then a+b is

IF lines (x-1)/(2) =(y+1)/(3) =(z-1)/(4) and x-3 =(y-k) /(2) = z intersect then the value of k is

If S_1={z:abs(z-3-2i)^2=8} , S_2={z:abs(z-barz)=8} and S_3={z:re(z) ge 5} then S_1capS_2capS_3 has

Let x,y,z are positive real numbers satisfying x+y+z=1 . If the maximum value of x^(3)y^(2)z can be expressed as (a)/(b) where a and b are co-prime,then the value of (a+b) is