Home
Class 12
MATHS
Let vecA=hati+hat5j+alphahatk , vecB=hat...

Let `vecA=hati+hat5j+alphahatk , vecB=hati+3hatj+betahatk , vecC=hati-2hatj+3hatk and abs(vecB xxvecC)=5sqrt3` . If `vecA` is perpendicular to `vecB` then the maxmimum value of `abs(vecA)^2` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to follow the given conditions and perform calculations accordingly. ### Step 1: Define the vectors We have three vectors defined as follows: - \(\vec{A} = \hat{i} + 5\hat{j} + \alpha\hat{k}\) - \(\vec{B} = \hat{i} + 3\hat{j} + \beta\hat{k}\) - \(\vec{C} = \hat{i} - 2\hat{j} + 3\hat{k}\) ### Step 2: Use the condition of perpendicularity Since \(\vec{A}\) is perpendicular to \(\vec{B}\), their dot product must equal zero: \[ \vec{A} \cdot \vec{B} = 0 \] Calculating the dot product: \[ (\hat{i} + 5\hat{j} + \alpha\hat{k}) \cdot (\hat{i} + 3\hat{j} + \beta\hat{k}) = 1 \cdot 1 + 5 \cdot 3 + \alpha \cdot \beta = 0 \] This simplifies to: \[ 1 + 15 + \alpha \beta = 0 \implies \alpha \beta = -16 \tag{1} \] ### Step 3: Calculate \(\vec{B} \times \vec{C}\) Now we need to calculate the cross product \(\vec{B} \times \vec{C}\): \[ \vec{B} \times \vec{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & \beta \\ 1 & -2 & 3 \end{vmatrix} \] Calculating the determinant: \[ \vec{B} \times \vec{C} = \hat{i}(3 \cdot 3 - \beta \cdot (-2)) - \hat{j}(1 \cdot 3 - \beta \cdot 1) + \hat{k}(1 \cdot (-2) - 3 \cdot 1) \] This simplifies to: \[ \vec{B} \times \vec{C} = \hat{i}(9 + 2\beta) - \hat{j}(3 - \beta) + \hat{k}(-2 - 3) \] Thus: \[ \vec{B} \times \vec{C} = (9 + 2\beta)\hat{i} + (-(3 - \beta))\hat{j} - 5\hat{k} \] ### Step 4: Find the magnitude of \(\vec{B} \times \vec{C}\) We are given that the magnitude of \(\vec{B} \times \vec{C}\) is \(5\sqrt{3}\): \[ |\vec{B} \times \vec{C}| = \sqrt{(9 + 2\beta)^2 + (3 - \beta)^2 + 25} = 5\sqrt{3} \] Squaring both sides: \[ (9 + 2\beta)^2 + (3 - \beta)^2 + 25 = 75 \] This simplifies to: \[ (9 + 2\beta)^2 + (3 - \beta)^2 = 50 \] ### Step 5: Expand and simplify Expanding: \[ (81 + 36\beta + 4\beta^2) + (9 - 6\beta + \beta^2) = 50 \] Combining like terms: \[ 5\beta^2 + 30\beta + 40 = 0 \] Dividing by 5: \[ \beta^2 + 6\beta + 8 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula: \[ \beta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-6 \pm \sqrt{36 - 32}}{2} = \frac{-6 \pm 2}{2} \] This gives: \[ \beta = -2 \quad \text{or} \quad \beta = -4 \] ### Step 7: Find corresponding \(\alpha\) values Using equation (1): 1. If \(\beta = -2\): \[ \alpha(-2) = -16 \implies \alpha = 8 \] 2. If \(\beta = -4\): \[ \alpha(-4) = -16 \implies \alpha = 4 \] ### Step 8: Find the maximum value of \(|\vec{A}|^2\) The magnitude squared of \(\vec{A}\) is: \[ |\vec{A}|^2 = 1^2 + 5^2 + \alpha^2 = 1 + 25 + \alpha^2 = 26 + \alpha^2 \] Calculating for both \(\alpha\) values: 1. For \(\alpha = 8\): \[ |\vec{A}|^2 = 26 + 64 = 90 \] 2. For \(\alpha = 4\): \[ |\vec{A}|^2 = 26 + 16 = 42 \] ### Conclusion The maximum value of \(|\vec{A}|^2\) is: \[ \boxed{90} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let veca=hati+5 hat j+alpha hat k , vecb=hati+3hatj+betahatk and vec c=-hati+2hatj-3hatk be three vectors such that, |vecbxxvec c|=5sqrt(3) and veca is perpendicular to vecb . Then the greatest amongst the values of |veca|^(2) is ____________.

If vecA 2 hati +hatj -hatk, vecB=hati +2hatj +3hatk, vecC=6hati -2hatj-6hatk angle between (vecA+vecB) and vecC will be

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

If vecA=2hati+hatj-hatk. vecB=hati+2hatj+3hatk and vecC=6hati-2hatj-6hatk then the angle between (vecA+vecB) and vecC will be :-

If veca = 2hati+2hatj+3hatk, vecb = -hati+2hatj+hatk and vecc = 3hati+hatj such that veca+lambdavecb is perpendicular to vecc then find the value of lambda .

Let veca=hati-3hatj+4hatk , vecB=6hati+4hatj-8hatk , vecC=5hati+2hatj+5hatk and a vector vecR satisfies vecR xx vecB = vecC xx vecB , vecR.vecA=0 , then the value of (|vecB|)/(|vecR-vecC|) is