Home
Class 14
MATHS
The value of ("tan"^2 30^@ + 1/2 "sin"^2...

The value of `("tan"^2 30^@ + 1/2 "sin"^2 90^@ + 1/8 "cot"^2 60^@ + "sin"^2 30^@ "cos"^2 45^@)/("sin" 60^@ "cos"30^@ - "cos"60^@ "sin"30^@)`

A

`1 3/4`

B

2

C

`2 1/2`

D

`3 1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression step by step, we need to evaluate both the numerator and the denominator separately. ### Step 1: Evaluate the numerator The numerator is given as: \[ \tan^2 30^\circ + \frac{1}{2} \sin^2 90^\circ + \frac{1}{8} \cot^2 60^\circ + \sin^2 30^\circ \cos^2 45^\circ \] 1. **Calculate \(\tan^2 30^\circ\)**: \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] 2. **Calculate \(\sin^2 90^\circ\)**: \[ \sin 90^\circ = 1 \quad \Rightarrow \quad \sin^2 90^\circ = 1^2 = 1 \] Thus, \(\frac{1}{2} \sin^2 90^\circ = \frac{1}{2} \cdot 1 = \frac{1}{2}\). 3. **Calculate \(\cot^2 60^\circ\)**: \[ \cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \cot^2 60^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Thus, \(\frac{1}{8} \cot^2 60^\circ = \frac{1}{8} \cdot \frac{1}{3} = \frac{1}{24}\). 4. **Calculate \(\sin^2 30^\circ\) and \(\cos^2 45^\circ\)**: \[ \sin 30^\circ = \frac{1}{2} \quad \Rightarrow \quad \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] \[ \cos 45^\circ = \frac{1}{\sqrt{2}} \quad \Rightarrow \quad \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] Thus, \(\sin^2 30^\circ \cos^2 45^\circ = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}\). 5. **Combine all parts of the numerator**: \[ \text{Numerator} = \frac{1}{3} + \frac{1}{2} + \frac{1}{24} + \frac{1}{8} \] To add these fractions, we need a common denominator. The least common multiple of \(3, 2, 24, 8\) is \(24\). - Convert each term: \[ \frac{1}{3} = \frac{8}{24}, \quad \frac{1}{2} = \frac{12}{24}, \quad \frac{1}{24} = \frac{1}{24}, \quad \frac{1}{8} = \frac{3}{24} \] - Now add them: \[ \text{Numerator} = \frac{8 + 12 + 1 + 3}{24} = \frac{24}{24} = 1 \] ### Step 2: Evaluate the denominator The denominator is given as: \[ \sin 60^\circ \cos 30^\circ - \cos 60^\circ \sin 30^\circ \] 1. **Calculate \(\sin 60^\circ\) and \(\cos 30^\circ\)**: \[ \sin 60^\circ = \frac{\sqrt{3}}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, \(\sin 60^\circ \cos 30^\circ = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{4}\). 2. **Calculate \(\cos 60^\circ\) and \(\sin 30^\circ\)**: \[ \cos 60^\circ = \frac{1}{2}, \quad \sin 30^\circ = \frac{1}{2} \] Thus, \(\cos 60^\circ \sin 30^\circ = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}\). 3. **Combine the parts of the denominator**: \[ \text{Denominator} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 3: Final calculation Now we can compute the final value: \[ \text{Value} = \frac{\text{Numerator}}{\text{Denominator}} = \frac{1}{\frac{1}{2}} = 2 \] ### Final Answer The value of the expression is \(2\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (4 tan^(2) 30^circ + 1/4 sin^(2)90^circ + 1/8 cot^(2)60^circ + sin^(2)30^circ cos^(2)45^circ)/ (sin 60^circ cos30^circ - cos60^circ sin30^circ) is : (4 tan^(2) 30^circ + 1/4 sin^(2)90^circ + 1/8 cot^(2)60^circ + sin^(2)30^circ cos^(2)45^circ)/ (sin 60^circ cos30^circ - cos60^circ sin30^circ) का मान है:

The value of (4 tan^2 30+1/4 sin^2 90+ 1/8 cot^2 60+ sin^2 30. cos^2 45)/ (sin60.cos30-cos60.sin30) is/ (4 tan^2 30+1/4 sin^2 90+ 1/8 cot^2 60+ sin^2 30. cos^2 45)/ (sin60.cos30-cos60.sin30) का मान है

The value of (4cos^2 60^@ + 3 sec^2 30^@ -cot^2 45^@)/(cos^2 60^@ + sin^2 60^@) is:

The value of cos^2 30^@ + sin^2 60^@ + tan^2 45^@ + sec^2 60^@ + cos 0^@ is

The value of sin^2 30^@ cos^2 45^@ + 5 tan^2 30 + 3/2 sin^2 90^@ - 3 cos^2 90^@ is

The numerical value of ( cos^2 45^@ ) /( sin ^2 60 ^@) +( cos ^2 60^@ )/( sin ^2 45 ^@ ) -(tan ^2 30 ^@ )/( cot^2 45^@ ) -( sin^2 30 ^@ )/( cot^2 30^@) is

Evaluate : tan^2 30^@ sin^2 30^@ + cos 60^@ sin^2 90^@tan^2 60^@-2 tan 45^@ cos^2 0^@ sin 90^@

The value of (tan ^(2) 60^(@) + 4 sin ^(2) 45 ^(@) + 3 sec ^(2) 30^(@) + 5 cos ^(2) 90^(@))/( "cosec" 30^(@) + sec 60^(@) - cot ^(2) 30^(@)) is

The value of sin^(2) 60^(@) + 2 tan 45^(@) - cos^(2) 30^(@) is :