Home
Class 14
MATHS
If (1/(1+ "cosec" theta)-1/(1-"cosec" th...

If `(1/(1+ "cosec" theta)-1/(1-"cosec" theta))costheta =2,0^@ lt theta lt 90^@` then the value of `sin^2 theta + cot^2 theta + sec^2 theta` is :

A

1

B

`2 1/2`

C

`3 1/2`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \left( \frac{1}{1 + \csc \theta} - \frac{1}{1 - \csc \theta} \right) \cos \theta = 2 \] ### Step 1: Simplify the left-hand side We first find a common denominator for the fractions: \[ \frac{1}{1 + \csc \theta} - \frac{1}{1 - \csc \theta} = \frac{(1 - \csc \theta) - (1 + \csc \theta)}{(1 + \csc \theta)(1 - \csc \theta)} \] This simplifies to: \[ \frac{-2 \csc \theta}{(1 + \csc \theta)(1 - \csc \theta)} = \frac{-2 \csc \theta}{1 - \csc^2 \theta} \] Using the identity \( \csc^2 \theta = 1 + \cot^2 \theta \), we rewrite the denominator: \[ 1 - \csc^2 \theta = -\cot^2 \theta \] Thus, the expression becomes: \[ \frac{-2 \csc \theta}{-\cot^2 \theta} = \frac{2 \csc \theta}{\cot^2 \theta} \] ### Step 2: Substitute back into the equation Now substituting back into the equation gives us: \[ \frac{2 \csc \theta}{\cot^2 \theta} \cos \theta = 2 \] Since \( \csc \theta = \frac{1}{\sin \theta} \) and \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can rewrite this as: \[ \frac{2 \cdot \frac{1}{\sin \theta}}{\left(\frac{\cos \theta}{\sin \theta}\right)^2} \cos \theta = 2 \] This simplifies to: \[ \frac{2 \cdot \frac{1}{\sin \theta} \cdot \sin^2 \theta}{\cos^2 \theta} = 2 \] ### Step 3: Further simplification This leads to: \[ \frac{2 \sin \theta}{\cos^2 \theta} = 2 \] Dividing both sides by 2 gives: \[ \frac{\sin \theta}{\cos^2 \theta} = 1 \] ### Step 4: Solve for \(\theta\) This can be rewritten as: \[ \sin \theta = \cos^2 \theta \] Using the identity \( \sin \theta = 1 - \cos^2 \theta \): \[ \cos^2 \theta = 1 - \cos^2 \theta \] This leads to: \[ 2 \cos^2 \theta = 1 \implies \cos^2 \theta = \frac{1}{2} \implies \cos \theta = \frac{1}{\sqrt{2}} \implies \theta = 45^\circ \] ### Step 5: Calculate \( \sin^2 \theta + \cot^2 \theta + \sec^2 \theta \) Now we need to find: \[ \sin^2 \theta + \cot^2 \theta + \sec^2 \theta \] Calculating each term for \( \theta = 45^\circ \): - \( \sin^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \) - \( \cot^2 45^\circ = 1^2 = 1 \) - \( \sec^2 45^\circ = \left(\frac{1}{\cos 45^\circ}\right)^2 = \left(\sqrt{2}\right)^2 = 2 \) Adding these together: \[ \sin^2 \theta + \cot^2 \theta + \sec^2 \theta = \frac{1}{2} + 1 + 2 = \frac{1}{2} + \frac{2}{2} + \frac{4}{2} = \frac{7}{2} \] ### Final Answer Thus, the value of \( \sin^2 \theta + \cot^2 \theta + \sec^2 \theta \) is: \[ \frac{7}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , then the value of sin^(2) theta + cot^(2) theta + sec^(2) theta is: यदि (1/(1+cosec theta ) - 1/(1-cosec theta ))cos theta= 2 , 0^circ lt theta lt 90^circ , है,तो sin^(2) theta + cot^(2) theta + sec^(2) theta का मान हैः

If 0^@ lt theta lt 90^@ , find the value of theta satisfying 2 sin theta =cosec theta

If 7sin^(2)theta+cos^(2)theta=4,0^(@)lt theta lt90^(@) , then the value of (tan^(2)2theta+"cosec"^(2)2theta) is :

If sin theta= sqrt 3 cos theta, 0^@< theta< 90^@ , then the value of 2 sin^2 theta+ sec^2 theta+ sin theta sec theta+ cosec theta is :

if (cos theta)/(1-sin theta)+ (cos theta)/(1 + sin theta) = 4 , 0^@ lt theta lt 90^@ then what is the value of (sec theta + cosec theta + cot theta)?

If (1/(1-sin theta) +1/(1+sin theta)) = 4sec theta , 0^circ lt theta lt 90^circ then the value of (3cot theta + cosec theta) is: यदि (1/(1-sin theta) +1/(1+sin theta)) = 4sec theta , 0^circ lt theta lt 90^circ है, तो (3cot theta + cosec theta) का मान हैः

If cos theta=(4)/(5) and 0lt theta lt 90^(@) , then the value of (3cos theta+"2 cosec "theta)/(4sin theta-cot theta) is :

1+(cot^(2)theta)/(1+csc theta)=csc theta