Home
Class 14
MATHS
If a^3+b^3=1344 and a+b= 28, then (a+b)^...

If `a^3+b^3=1344` and a+b= 28, then `(a+b)^2 -3ab` is equal to:

A

a)16

B

b)32

C

c)48

D

d)24

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^3 +b^3 =110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3 +b^3 =110 और a+b=5 है, तो (a+b)^2 -3ab बराबर हैः

If a^3+b^3=432 and a+b=12, then (a+b)^2 -3ab is equal to: यदि a^3+b^3=432 तथा a+b=12, तो (a+b)^2 -3ab का मान क्या होगा ?

If a^3+b^3=5824 and a+b=28, then (a-b)^2 +ab is equal to: यदि a^3+b^3=5824 तथा a+b=28 है, तो (a-b)^2 +ab किसके बराबर है?

If a^3-b^3=899 and a -b = 31, then (a-b)^2+ 3ab is equal to: यदि a^3+b^3=899 और a -b = 31 है तो (a-b)^2+ 3ab का मान है:

If a^3+b^3=110 and a+b=5, then (a+b)^2 -3ab is equal to: यदि a^3+b^3=110 तथा a+b=5, तो (a+b)^2 -3ab का मान क्या होगा ?

If a^3-b^3=899 and a -b = 29, then (a-b)^2+ 3ab is equal to:

If a^3-b^3=1603 and (a-b)=7, then (a+b)^2 -ab is equal to: यदि a^3-b^3=1603 तथा (a-b)=7, तो (a+b)^2 -ab का मान किसके बराबर होगा ?

If a^3-b^3=416 and a-b=8, then (a+b)^2 -ab is equal to: यदि a^3-b^3=416 तथा a-b= 8, तो (a+b)^2 -ab का मान क्या है ?

If a^(3) - b^(3)= 210 and a-b=5 , then (a+b)^(2)-ab is equal to :

If a^3-b^3=899 and a-b=29, then (a-b)^2 +3ab is equal to: यदि a^3-b^3=899 तथा a-b= 29, तो (a-b)^2 +3ab का मान ज्ञात करें |