Home
Class 14
MATHS
If the seven digit number number 54x29y6...

If the seven digit number number 54x29y6 `(xgty)` is divisble by 72, what is the value of `(2x+3y)`?

A

a)38

B

b)13

C

c) 32

D

d) 23

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \(x\) and \(y\) such that the seven-digit number \(54x29y6\) is divisible by 72. A number is divisible by 72 if it is divisible by both 8 and 9. ### Step 1: Check for divisibility by 8 For a number to be divisible by 8, the last three digits must form a number that is divisible by 8. The last three digits of our number are \(29y6\). We can express this as \(29y6\) and check the possible values of \(y\) (from 0 to 9) to see which makes \(29y6\) divisible by 8. - If \(y = 0\): \(2906 \div 8 = 363.25\) (not divisible) - If \(y = 1\): \(2916 \div 8 = 364.5\) (not divisible) - If \(y = 2\): \(2926 \div 8 = 365.75\) (not divisible) - If \(y = 3\): \(2936 \div 8 = 367\) (divisible) - If \(y = 4\): \(2946 \div 8 = 368.25\) (not divisible) - If \(y = 5\): \(2956 \div 8 = 369.5\) (not divisible) - If \(y = 6\): \(2966 \div 8 = 370.75\) (not divisible) - If \(y = 7\): \(2976 \div 8 = 372\) (divisible) - If \(y = 8\): \(2986 \div 8 = 373.25\) (not divisible) - If \(y = 9\): \(2996 \div 8 = 374.5\) (not divisible) From this, we find that \(y\) can be 3 or 7. ### Step 2: Check for divisibility by 9 Next, we need to check the sum of the digits for divisibility by 9. The sum of the digits is: \[ 5 + 4 + x + 2 + 9 + y + 6 = 26 + x + y \] This sum must be divisible by 9. #### Case 1: \(y = 3\) \[ 26 + x + 3 = 29 + x \] We need \(29 + x\) to be divisible by 9. The possible values of \(x\) (from 0 to 9) give us: - If \(x = 0\): \(29 + 0 = 29\) (not divisible) - If \(x = 1\): \(29 + 1 = 30\) (not divisible) - If \(x = 2\): \(29 + 2 = 31\) (not divisible) - If \(x = 3\): \(29 + 3 = 32\) (not divisible) - If \(x = 4\): \(29 + 4 = 33\) (divisible) - If \(x = 5\): \(29 + 5 = 34\) (not divisible) - If \(x = 6\): \(29 + 6 = 35\) (not divisible) - If \(x = 7\): \(29 + 7 = 36\) (divisible) - If \(x = 8\): \(29 + 8 = 37\) (not divisible) - If \(x = 9\): \(29 + 9 = 38\) (not divisible) So, for \(y = 3\), \(x\) can be 4 or 7. #### Case 2: \(y = 7\) \[ 26 + x + 7 = 33 + x \] We need \(33 + x\) to be divisible by 9: - If \(x = 0\): \(33 + 0 = 33\) (divisible) - If \(x = 1\): \(33 + 1 = 34\) (not divisible) - If \(x = 2\): \(33 + 2 = 35\) (not divisible) - If \(x = 3\): \(33 + 3 = 36\) (divisible) - If \(x = 4\): \(33 + 4 = 37\) (not divisible) - If \(x = 5\): \(33 + 5 = 38\) (not divisible) - If \(x = 6\): \(33 + 6 = 39\) (divisible) - If \(x = 7\): \(33 + 7 = 40\) (not divisible) - If \(x = 8\): \(33 + 8 = 41\) (not divisible) - If \(x = 9\): \(33 + 9 = 42\) (not divisible) So, for \(y = 7\), \(x\) can be 0, 3, or 6. ### Step 3: Apply the condition \(x > y\) Now we have: - For \(y = 3\), \(x\) can be 4 or 7 (both valid since \(x > y\)). - For \(y = 7\), \(x\) can be 0, 3, or 6 (none valid since \(x\) cannot be greater than \(y\)). Thus, the only valid pairs are: 1. \( (x, y) = (4, 3) \) 2. \( (x, y) = (7, 3) \) ### Step 4: Calculate \(2x + 3y\) Now we calculate \(2x + 3y\) for both pairs. 1. For \( (x, y) = (4, 3) \): \[ 2x + 3y = 2(4) + 3(3) = 8 + 9 = 17 \] 2. For \( (x, y) = (7, 3) \): \[ 2x + 3y = 2(7) + 3(3) = 14 + 9 = 23 \] Since both pairs are valid, we conclude that the value of \(2x + 3y\) can be either 17 or 23, but since \(x\) must be greater than \(y\), we take \( (x, y) = (7, 3) \). ### Final Answer Thus, the value of \(2x + 3y\) is \(23\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If the seven digit number 54x29y6 (x > y) is divisible by 72, what is the value of (2x + 3y)? यदि सात अंकों की संख्या 54x29y6 (x > y) 72 से विभाजित है, तो (2x + 3y) का मान क्या होगा ?

If the seven digit number 64x29y6 (x > y) is divisible by 72, what is the value of (2x - 3y) ? यदि सात अंकों की संख्या 64x29y6 (x > y) 72 से विभाजित है, तो (2x -3y) का मान क्या होगा ?

If the seven digit number 64x29y6 (x > y) is divisible by 72, what is the value of (2x -y) ? यदि सात अंकों की संख्या 64x29y6 (x > y) 72 से विभाजित है, तो (2x -y) का मान क्या होगा ?

If the seven digit number 74x29y6 is divisible by 72, then what will be the value of (2x + 3y)? यदि सात अंकों की संख्या 74x29y6, 72 से विभाजित है, तो (2x + 3y) का मान क्या होगा ?

If the seven digit number 56x34y4 is divisible by 72, then what will be the value of (x + y)? यदि सात अंकों की संख्या 56x34y4, 72 से विभाजित है, तो (x + y) का न्यूनतम मान ज्ञात करें |

If the seven digit number 3x6349y is divisible by 88, then what will be the value of (2x + 3y)? यदि सात अंकों की संख्या 3x6349y 88 से विभाजित है, तो (2x + 3y) का मान क्या होगा ?

The 10-digit number 90457416 xy is divisible by 9, and x-y=3. what is the value of (5x+3y)?

If an eleven-digit number 5y5888406xx6 is divisible by 72, then what is the value of (9x — 2y), for the least value of x?

If the seven digit number 5x634y2 is divisible by 88 such that x!=y , then ehat is the value of (2y-3x) ?