Home
Class 14
MATHS
If DeltaABC,angleA=52^@, Its sides AB an...

If `DeltaABC,angleA=52^@`, Its sides AB and AC are produced to the points D and E respectively. If the bisectors of the `angleCBD and angleBCE` meet at point O, then `angleBOC` is equal to:

A

`106^@`

B

`64^@`

C

`16^@`

D

`32^@`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle \( \angle BOC \) given that \( \angle A = 52^\circ \) in triangle \( ABC \) and the sides \( AB \) and \( AC \) are extended to points \( D \) and \( E \) respectively. ### Step-by-Step Solution: 1. **Understanding the Angles**: - We know that \( \angle A = 52^\circ \). - Let \( \angle B = \angle 1 \) and \( \angle C = \angle 2 \). 2. **Using the Exterior Angle Theorem**: - The exterior angle \( \angle CBD \) (which is \( \angle 1 + \angle 2 \)) is equal to the sum of the opposite interior angles: \[ \angle CBD = \angle A + \angle 2 = 52^\circ + \angle 2 \] - Similarly, for \( \angle BCE \): \[ \angle BCE = \angle A + \angle 1 = 52^\circ + \angle 1 \] 3. **Setting Up the Angles at Point O**: - Let \( \angle BOC = x \) and \( \angle OBC = y \). - Since \( O \) is the intersection of the angle bisectors, we have: \[ \angle OBC = \frac{1}{2} \angle CBD = \frac{1}{2} (52^\circ + \angle 2) = \frac{52^\circ + \angle 2}{2} \] \[ \angle BCO = \frac{1}{2} \angle BCE = \frac{1}{2} (52^\circ + \angle 1) = \frac{52^\circ + \angle 1}{2} \] 4. **Using the Triangle Sum Property**: - In triangle \( ABC \), the sum of angles is \( 180^\circ \): \[ \angle A + \angle B + \angle C = 180^\circ \] \[ 52^\circ + \angle 1 + \angle 2 = 180^\circ \] \[ \angle 1 + \angle 2 = 128^\circ \] 5. **Finding \( \angle BOC \)**: - Now we can express \( \angle BOC \) in terms of \( x \) and \( y \): \[ \angle OBC + \angle BCO + \angle BOC = 180^\circ \] \[ \frac{52^\circ + \angle 2}{2} + \frac{52^\circ + \angle 1}{2} + x = 180^\circ \] - Substituting \( \angle 1 + \angle 2 = 128^\circ \): \[ \frac{52^\circ + \angle 2 + 52^\circ + \angle 1}{2} + x = 180^\circ \] \[ \frac{104^\circ + 128^\circ}{2} + x = 180^\circ \] \[ \frac{232^\circ}{2} + x = 180^\circ \] \[ 116^\circ + x = 180^\circ \] \[ x = 180^\circ - 116^\circ = 64^\circ \] Thus, \( \angle BOC = 64^\circ \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , angle A=72^@ . Its sides AB and AC are produced to the points D and E respectively. If the bisectors of the angle CBD and angle BCE meet at point O, then angle BOC is equal to:

In a triangle ABC , angle A=52^@ . Its sides AB and AC are produced to the points D and E respectively. If the bisectors of the angle CBD and angle BCE meet at point O, then angle BOC is equal to: triangle ABC में angle A=52^@ है। इनकी भुजाएं AB और AC क्रमशः D और E तक बढाई जाती है। अगर angle CBD और angle BCE समदूविभाजक बिंदु O पर मिलते हैं, तो angle BOC बराबर हैः

In triangle ABC , angle A=50^@ . Its sides AB and AC are produced to the point D and E. If the bisectors of the angle CBD and angle BCE meet at the point O, then angle BOC will be equal to: त्रिभुज ABC में, angle A=50^@ है | इसकी भुजाओं AB और AC को बिंदु D तथा E तक बढ़ाया जाता है | यदि कोण CBD और कोण BCE के द्विभाजक बिंदु O पर मिलते हैं, तो angle BOC का मान क्या होगा ?

In triangle ABC , angle A=50^@ . Its sides AB and AC are produced to the point D and E. If the bisectors of the angle CBD and angle BCE meet at the point O, then angle BOC will be equal to: त्रिभुज ABC में, angle A=50^@ है | इसकी भुजाओं AB और AC को बिंदु D तथा E तक बढ़ाया जाता है | यदि कोण CBD और कोण BCE के द्विभाजक बिंदु O पर मिलते हैं, तो angle BOC का मान किसके बराबर होगा ?

In triangle ABC , angle A=72^@ . Its sides AB and AC are produced to the point D and E. If the bisectors of the angle CBD and angle BCE meet at the point O, then angle BOC will be equal to: त्रिभुज ABC में, angle A=72^@ है | इसकी भुजाओं AB और AC को बिंदु D तथा E तक बढ़ाया जाता है | यदि कोण CBD और कोण BCE के समद्विभाजक बिंदु O पर मिलते हैं, तो angle BOC का मान ज्ञात करें |

In triangle ABC , angle A=66^@ . AB and AC are produced to points D and E respectively. If the bisector of angle angle CBD and angle BCE meet at the point O, then angle BOC is equal to : त्रिभुज ABC में, angle A=66^@ ,AB और AC क्रमशः D और E तक बढ़ाये जाते हैं। यदि कोण angle CBD और angle BCE के सम द्विभाजक बिंदु O पर मिलते हैं, तो angle BOC के ज्ञात करे

In angle ABC , AB and AC are produced to points D and E respectively. If the bisector of angle CBD and angle BCE meet at a point O and angle BOC=57^@ , then angle A is equal to : त्रिभुज ABC में, AB और AC क्रमशः D और E तक बढ़ाये जाते हैं। यदि कोण angle CBD और angle BCE के सम द्विभाजक बिंदु O पर मिलते हैं, और angle BOC=57^@ तो angle A बराबर है