Home
Class 14
MATHS
If x-1/x=7 , then x^3-(1)/(x^3) is equal...

If `x-1/x=7` , then `x^3-(1)/(x^3)` is equal to

A

480

B

500

C

364

D

376

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( x - \frac{1}{x} = 7 \) and we need to find \( x^3 - \frac{1}{x^3} \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ x - \frac{1}{x} = 7 \] ### Step 2: Cube both sides To find \( x^3 - \frac{1}{x^3} \), we can use the identity: \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] Here, let \( a = x \) and \( b = \frac{1}{x} \). Thus: \[ x^3 - \left(\frac{1}{x}\right)^3 = \left(x - \frac{1}{x}\right) \left(x^2 + x \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^2\right) \] ### Step 3: Substitute the known values We know \( x - \frac{1}{x} = 7 \). Now we need to calculate \( x^2 + x \cdot \frac{1}{x} + \left(\frac{1}{x}\right)^2 \): \[ x^2 + 1 + \frac{1}{x^2} \] ### Step 4: Find \( x^2 + \frac{1}{x^2} \) We can find \( x^2 + \frac{1}{x^2} \) using the square of \( x - \frac{1}{x} \): \[ \left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2} \] Substituting \( 7 \) into the equation: \[ 7^2 = x^2 - 2 + \frac{1}{x^2} \] \[ 49 = x^2 - 2 + \frac{1}{x^2} \] \[ x^2 + \frac{1}{x^2} = 49 + 2 = 51 \] ### Step 5: Substitute back to find \( x^3 - \frac{1}{x^3} \) Now substituting back into our earlier expression: \[ x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right) \left(x^2 + 1 + \frac{1}{x^2}\right) \] This becomes: \[ x^3 - \frac{1}{x^3} = 7 \left(51 + 1\right) = 7 \cdot 52 = 364 \] ### Final Answer Thus, the value of \( x^3 - \frac{1}{x^3} \) is: \[ \boxed{364} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

x-1/x= 7 , then x^3-1/x^3 is equal to : x-1/x= 7 है, तो x^3-1/x^3 का मान क्या होगा ?

If x+1/x= 3 , then x^3+1/x^3 is equal to : यदि x+1/x= 3 है, तो x^3+1/x^3 का मान क्या होगा ?

If (x - 1/x) = 5 , then x^3 - 1/(x^3) equals :

If (x+1/x)=2 then (x^3+1/x^3) is equal to:

If x + ( 1)/( x) = 4 , then x^(3) + ( 1)/( x^(3) is equal to :